You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3830 lines
141 KiB

/**
* (C) 2007-21 - ntop.org and contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not see see <http://www.gnu.org/licenses/>
*
*/
#include "n2n.h"
#include "network_traffic_filter.h"
#include "edge_utils_win32.h"
/* heap allocation for compression as per lzo example doc */
#define HEAP_ALLOC(var,size) lzo_align_t __LZO_MMODEL var [ ((size) + (sizeof(lzo_align_t) - 1)) / sizeof(lzo_align_t) ]
static HEAP_ALLOC(wrkmem, LZO1X_1_MEM_COMPRESS);
/* ************************************** */
int resolve_create_thread (n2n_resolve_parameter_t **param, struct peer_info *sn_list);
int resolve_check (n2n_resolve_parameter_t *param, uint8_t resolution_request, time_t now);
int resolve_cancel_thread (n2n_resolve_parameter_t *param);
static const char * supernode_ip (const n2n_edge_t * eee);
static void send_register (n2n_edge_t *eee, const n2n_sock_t *remote_peer, const n2n_mac_t peer_mac, n2n_cookie_t cookie);
static void check_peer_registration_needed (n2n_edge_t *eee,
uint8_t from_supernode,
uint8_t via_multicast,
const n2n_mac_t mac,
const n2n_cookie_t cookie,
const n2n_ip_subnet_t *dev_addr,
const n2n_desc_t *dev_desc,
const n2n_sock_t *peer);
static int edge_init_sockets (n2n_edge_t *eee);
int edge_init_routes (n2n_edge_t *eee, n2n_route_t *routes, uint16_t num_routes);
static void edge_cleanup_routes (n2n_edge_t *eee);
static void check_known_peer_sock_change (n2n_edge_t *eee,
uint8_t from_supernode,
uint8_t via_multicast,
const n2n_mac_t mac,
const n2n_ip_subnet_t *dev_addr,
const n2n_desc_t *dev_desc,
const n2n_sock_t *peer,
time_t when);
/* ************************************** */
int edge_verify_conf (const n2n_edge_conf_t *conf) {
if(conf->community_name[0] == 0)
return -1;
// REVISIT: are the following two conditions equal? if so, remove one. but note that sn_num is used elsewhere
if(conf->sn_num == 0)
return -2;
if(HASH_COUNT(conf->supernodes) == 0)
return -5;
if(conf->register_interval < 1)
return -3;
if(((conf->encrypt_key == NULL) && (conf->transop_id != N2N_TRANSFORM_ID_NULL)) ||
((conf->encrypt_key != NULL) && (conf->transop_id == N2N_TRANSFORM_ID_NULL)))
return -4;
return 0;
}
/* ************************************** */
void edge_set_callbacks (n2n_edge_t *eee, const n2n_edge_callbacks_t *callbacks) {
memcpy(&eee->cb, callbacks, sizeof(n2n_edge_callbacks_t));
}
/* ************************************** */
void edge_set_userdata (n2n_edge_t *eee, void *user_data) {
eee->user_data = user_data;
}
/* ************************************** */
void* edge_get_userdata (n2n_edge_t *eee) {
return(eee->user_data);
}
/* ************************************** */
int edge_get_n2n_socket (n2n_edge_t *eee) {
return(eee->sock);
}
/* ************************************** */
int edge_get_management_socket (n2n_edge_t *eee) {
return(eee->udp_mgmt_sock);
}
/* ************************************** */
const char* transop_str (enum n2n_transform tr) {
switch(tr) {
case N2N_TRANSFORM_ID_NULL: return("null");
case N2N_TRANSFORM_ID_TWOFISH: return("Twofish");
case N2N_TRANSFORM_ID_AES: return("AES");
case N2N_TRANSFORM_ID_CHACHA20:return("ChaCha20");
case N2N_TRANSFORM_ID_SPECK: return("Speck");
default: return("invalid");
};
}
/* ************************************** */
const char* compression_str (uint8_t cmpr) {
switch(cmpr) {
case N2N_COMPRESSION_ID_NONE: return("none");
case N2N_COMPRESSION_ID_LZO: return("lzo1x");
case N2N_COMPRESSION_ID_ZSTD: return("zstd");
default: return("invalid");
};
}
/* ************************************** */
/** Destination 01:00:5E:00:00:00 - 01:00:5E:7F:FF:FF is multicast ethernet.
*/
static int is_ethMulticast (const void * buf, size_t bufsize) {
int retval = 0;
/* Match 01:00:5E:00:00:00 - 01:00:5E:7F:FF:FF */
if(bufsize >= sizeof(ether_hdr_t)) {
/* copy to aligned memory */
ether_hdr_t eh;
memcpy(&eh, buf, sizeof(ether_hdr_t));
if((0x01 == eh.dhost[0]) &&
(0x00 == eh.dhost[1]) &&
(0x5E == eh.dhost[2]) &&
(0 == (0x80 & eh.dhost[3])))
retval = 1; /* This is an ethernet multicast packet [RFC1112]. */
}
return retval;
}
/* ************************************** */
/** Destination MAC 33:33:0:00:00:00 - 33:33:FF:FF:FF:FF is reserved for IPv6
* neighbour discovery.
*/
static int is_ip6_discovery (const void * buf, size_t bufsize) {
int retval = 0;
if(bufsize >= sizeof(ether_hdr_t)) {
/* copy to aligned memory */
ether_hdr_t eh;
memcpy(&eh, buf, sizeof(ether_hdr_t));
if((0x33 == eh.dhost[0]) && (0x33 == eh.dhost[1]))
retval = 1; /* This is an IPv6 multicast packet [RFC2464]. */
}
return retval;
}
/* ************************************** */
// reset number of supernode connection attempts: try only once for already more realiable tcp connections
void reset_sup_attempts (n2n_edge_t *eee) {
eee->sup_attempts = (eee->conf.connect_tcp) ? 1 : N2N_EDGE_SUP_ATTEMPTS;
}
// detect local IP address by probing a connection to the supernode
static int detect_local_ip_address (n2n_sock_t* out_sock, const n2n_edge_t* eee) {
struct sockaddr_in local_sock;
struct sockaddr_in sn_sock;
socklen_t sock_len = sizeof(local_sock);
SOCKET probe_sock;
int ret = 0;
out_sock->family = AF_INVALID;
// always detetct local port even/especially if chosen by OS...
if((getsockname(eee->sock, (struct sockaddr *)&local_sock, &sock_len) == 0)
&& (local_sock.sin_family == AF_INET)
&& (sock_len == sizeof(local_sock)))
// remember the port number
out_sock->port = ntohs(local_sock.sin_port);
else
ret = -1;
// probe for local IP address
probe_sock = socket(PF_INET, SOCK_DGRAM, 0);
// connecting the UDP socket makes getsockname read the local address it uses to connect (to the sn in this case);
// we cannot do it with the real (eee->sock) socket because socket does not accept any conenction from elsewhere then,
// e.g. from another edge instead of the supernode; as re-connecting to AF_UNSPEC might not work to release the socket
// on non-UNIXoids, we use a temporary socket
if((int)probe_sock >= 0) {
fill_sockaddr((struct sockaddr*)&sn_sock, sizeof(sn_sock), &eee->curr_sn->sock);
if(connect(probe_sock, (struct sockaddr *)&sn_sock, sizeof(sn_sock)) == 0) {
if((getsockname(probe_sock, (struct sockaddr *)&local_sock, &sock_len) == 0)
&& (local_sock.sin_family == AF_INET)
&& (sock_len == sizeof(local_sock))) {
memcpy(&(out_sock->addr.v4), &(local_sock.sin_addr.s_addr), IPV4_SIZE);
} else
ret = -4;
} else
ret = -3;
closesocket(probe_sock);
} else
ret = -2;
out_sock->family = AF_INET;
return ret;
}
// open socket, close it before if TCP
// in case of TCP, 'connect()' is required
int supernode_connect (n2n_edge_t *eee) {
int sockopt;
struct sockaddr_in sn_sock;
n2n_sock_t local_sock;
n2n_sock_str_t sockbuf;
if((eee->conf.connect_tcp) && (eee->sock >= 0)) {
closesocket(eee->sock);
eee->sock = -1;
}
if(eee->sock < 0) {
if(eee->conf.local_port > 0)
traceEvent(TRACE_NORMAL, "binding to local port %d",
(eee->conf.connect_tcp) ? 0 : eee->conf.local_port);
eee->sock = open_socket((eee->conf.connect_tcp) ? 0 : eee->conf.local_port,
eee->conf.bind_address,
eee->conf.connect_tcp);
if(eee->sock < 0) {
traceEvent(TRACE_ERROR, "failed to bind main UDP port %u",
(eee->conf.connect_tcp) ? 0 : eee->conf.local_port);
return -1;
}
fill_sockaddr((struct sockaddr*)&sn_sock, sizeof(sn_sock), &eee->curr_sn->sock);
// set tcp socket to O_NONBLOCK so connect does not hang
// requires checking the socket for readiness before sending and receving
if(eee->conf.connect_tcp) {
#ifdef WIN32
u_long value = 1;
ioctlsocket(eee->sock, FIONBIO, &value);
#else
fcntl(eee->sock, F_SETFL, O_NONBLOCK);
#endif
if((connect(eee->sock, (struct sockaddr*)&(sn_sock), sizeof(struct sockaddr)) < 0)
&& (errno != EINPROGRESS)) {
eee->sock = -1;
return -1;
}
}
if(eee->conf.tos) {
/* https://www.tucny.com/Home/dscp-tos */
sockopt = eee->conf.tos;
if(setsockopt(eee->sock, IPPROTO_IP, IP_TOS, (char *)&sockopt, sizeof(sockopt)) == 0)
traceEvent(TRACE_INFO, "TOS set to 0x%x", eee->conf.tos);
else
traceEvent(TRACE_WARNING, "could not set TOS 0x%x[%d]: %s", eee->conf.tos, errno, strerror(errno));
}
#ifdef IP_PMTUDISC_DO
sockopt = (eee->conf.disable_pmtu_discovery) ? IP_PMTUDISC_DONT : IP_PMTUDISC_DO;
if(setsockopt(eee->sock, IPPROTO_IP, IP_MTU_DISCOVER, &sockopt, sizeof(sockopt)) < 0)
traceEvent(TRACE_WARNING, "could not %s PMTU discovery[%d]: %s",
(eee->conf.disable_pmtu_discovery) ? "disable" : "enable", errno, strerror(errno));
else
traceEvent(TRACE_INFO, "PMTU discovery %s", (eee->conf.disable_pmtu_discovery) ? "disabled" : "enabled");
#endif
memset(&local_sock, 0, sizeof(n2n_sock_t));
if(detect_local_ip_address(&local_sock, eee) == 0) {
// always overwrite local port even/especially if chosen by OS...
eee->conf.preferred_sock.port = local_sock.port;
// only if auto-detection mode, ...
if(eee->conf.preferred_sock_auto) {
// ... overwrite IP address, too (whole socket struct here)
memcpy(&eee->conf.preferred_sock, &local_sock, sizeof(n2n_sock_t));
traceEvent(TRACE_INFO, "determined local socket [%s]",
sock_to_cstr(sockbuf, &local_sock));
}
}
if(eee->cb.sock_opened)
eee->cb.sock_opened(eee);
}
return 0;
}
// always closes the socket
void supernode_disconnect (n2n_edge_t *eee) {
if(eee->sock >= 0) {
closesocket(eee->sock);
eee->sock = -1;
}
}
/* ************************************** */
/** Initialise an edge to defaults.
*
* This also initialises the NULL transform operation opstruct.
*/
n2n_edge_t* edge_init (const n2n_edge_conf_t *conf, int *rv) {
n2n_transform_t transop_id = conf->transop_id;
n2n_edge_t *eee = calloc(1, sizeof(n2n_edge_t));
int rc = -1, i = 0;
struct peer_info *scan, *tmp;
uint8_t tmp_key[N2N_AUTH_CHALLENGE_SIZE];
if((rc = edge_verify_conf(conf)) != 0) {
traceEvent(TRACE_ERROR, "invalid configuration");
goto edge_init_error;
}
if(!eee) {
traceEvent(TRACE_ERROR, "cannot allocate memory");
goto edge_init_error;
}
memcpy(&eee->conf, conf, sizeof(*conf));
eee->curr_sn = eee->conf.supernodes;
eee->start_time = time(NULL);
eee->known_peers = NULL;
eee->pending_peers = NULL;
reset_sup_attempts(eee);
sn_selection_criterion_common_data_default(eee);
pearson_hash_init();
if(eee->conf.compression == N2N_COMPRESSION_ID_LZO)
if(lzo_init() != LZO_E_OK) {
traceEvent(TRACE_ERROR, "LZO compression error");
goto edge_init_error;
}
#ifdef N2N_HAVE_ZSTD
// zstd does not require initialization. if it were required, this would be a good place
#endif
traceEvent(TRACE_NORMAL, "number of supernodes in the list: %d\n", HASH_COUNT(eee->conf.supernodes));
HASH_ITER(hh, eee->conf.supernodes, scan, tmp) {
traceEvent(TRACE_NORMAL, "supernode %u => %s\n", i, (scan->ip_addr));
i++;
}
/* Set active transop */
switch(transop_id) {
case N2N_TRANSFORM_ID_TWOFISH:
rc = n2n_transop_tf_init(&eee->conf, &eee->transop);
break;
case N2N_TRANSFORM_ID_AES:
rc = n2n_transop_aes_init(&eee->conf, &eee->transop);
break;
case N2N_TRANSFORM_ID_CHACHA20:
rc = n2n_transop_cc20_init(&eee->conf, &eee->transop);
break;
case N2N_TRANSFORM_ID_SPECK:
rc = n2n_transop_speck_init(&eee->conf, &eee->transop);
break;
default:
rc = n2n_transop_null_init(&eee->conf, &eee->transop);
}
if((rc < 0) || (eee->transop.fwd == NULL) || (eee->transop.transform_id != transop_id)) {
traceEvent(TRACE_ERROR, "transop init failed");
goto edge_init_error;
}
// set the key schedule (context) for header encryption if enabled
if(conf->header_encryption == HEADER_ENCRYPTION_ENABLED) {
traceEvent(TRACE_NORMAL, "Header encryption is enabled.");
packet_header_setup_key((char *)(eee->conf.community_name),
&(eee->conf.header_encryption_ctx_static),
&(eee->conf.header_encryption_ctx_dynamic),
&(eee->conf.header_iv_ctx_static),
&(eee->conf.header_iv_ctx_dynamic));
// in case of user/password auth, initialize a random dynamic key to prevent
// unintentional communication with only-header-encrypted community; will be
// overwritten by legit key later
if(conf->shared_secret) {
memrnd(tmp_key, N2N_AUTH_CHALLENGE_SIZE);
packet_header_change_dynamic_key(tmp_key,
&(eee->conf.header_encryption_ctx_dynamic),
&(eee->conf.header_iv_ctx_dynamic));
}
}
// setup authentication scheme
if(!conf->shared_secret) {
// id-based scheme
eee->conf.auth.scheme = n2n_auth_simple_id;
// random authentication token
memrnd(eee->conf.auth.token, N2N_AUTH_ID_TOKEN_SIZE);
eee->conf.auth.token_size = N2N_AUTH_ID_TOKEN_SIZE;
} else {
// user-password scheme
eee->conf.auth.scheme = n2n_auth_user_password;
// 'token' stores public key and the last random challenge being set upon sending REGISTER_SUPER
memcpy(eee->conf.auth.token, eee->conf.public_key, N2N_PRIVATE_PUBLIC_KEY_SIZE);
// random part of token (challenge) will be generated and filled in at each REGISTER_SUPER
eee->conf.auth.token_size = N2N_AUTH_PW_TOKEN_SIZE;
// make sure that only stream ciphers are being used
if((transop_id != N2N_TRANSFORM_ID_CHACHA20)
&& (transop_id != N2N_TRANSFORM_ID_SPECK)) {
traceEvent(TRACE_ERROR, "user-password authentication requires ChaCha20 (-A4) or SPECK (-A5) to be used.");
goto edge_init_error;
}
}
if(eee->transop.no_encryption)
traceEvent(TRACE_WARNING, "encryption is disabled in edge");
// first time calling edge_init_sockets needs -1 in the sockets for it does throw an error
// on trying to close them (open_sockets does so for also being able to RE-open the sockets
// if called in-between, see "Supernode not responding" in update_supernode_reg(...)
eee->sock = -1;
eee->udp_mgmt_sock = -1;
#ifndef SKIP_MULTICAST_PEERS_DISCOVERY
eee->udp_multicast_sock = -1;
#endif
if(edge_init_sockets(eee) < 0) {
traceEvent(TRACE_ERROR, "socket setup failed");
goto edge_init_error;
}
if(resolve_create_thread(&(eee->resolve_parameter), eee->conf.supernodes) == 0) {
traceEvent(TRACE_NORMAL, "successfully created resolver thread");
}
eee->network_traffic_filter = create_network_traffic_filter();
network_traffic_filter_add_rule(eee->network_traffic_filter, eee->conf.network_traffic_filter_rules);
//edge_init_success:
*rv = 0;
return(eee);
edge_init_error:
if(eee)
free(eee);
*rv = rc;
return(NULL);
}
/* ************************************** */
static int find_and_remove_peer (struct peer_info **head, const n2n_mac_t mac) {
struct peer_info *peer;
HASH_FIND_PEER(*head, mac, peer);
if(peer) {
HASH_DEL(*head, peer);
free(peer);
return(1);
}
return(0);
}
/* ************************************** */
static uint32_t localhost_v4 = 0x7f000001;
static uint8_t localhost_v6[IPV6_SIZE] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
/* Exclude localhost as it may be received when an edge node runs
* in the same supernode host.
*/
static int is_valid_peer_sock (const n2n_sock_t *sock) {
switch(sock->family) {
case AF_INET: {
uint32_t *a = (uint32_t*)sock->addr.v4;
if(*a != htonl(localhost_v4))
return(1);
}
break;
case AF_INET6:
if(memcmp(sock->addr.v6, localhost_v6, IPV6_SIZE))
return(1);
break;
}
return(0);
}
/* ***************************************************** */
/***
*
* For a given packet, find the apporopriate internal last valid time stamp for lookup
* and verify it (and also update, if applicable).
*/
static int find_peer_time_stamp_and_verify (n2n_edge_t * eee,
peer_info_t *sn, const n2n_mac_t mac,
uint64_t stamp, int allow_jitter) {
uint64_t *previous_stamp = NULL;
if(sn) {
// from supernode
previous_stamp = &(sn->last_valid_time_stamp);
} else {
// from (peer) edge
struct peer_info *peer;
HASH_FIND_PEER(eee->pending_peers, mac, peer);
if(!peer) {
HASH_FIND_PEER(eee->known_peers, mac, peer);
}
if(peer) {
// time_stamp_verify_and_update allows the pointer a previous stamp to be NULL
// if it is a (so far) unknown peer
previous_stamp = &(peer->last_valid_time_stamp);
}
}
// failure --> 0; success --> 1
return time_stamp_verify_and_update(stamp, previous_stamp, allow_jitter);
}
/* ************************************** */
/***
*
* Register over multicast in case there is a peer on the same network listening
*/
static void register_with_local_peers (n2n_edge_t * eee) {
#ifndef SKIP_MULTICAST_PEERS_DISCOVERY
if((eee->multicast_joined && eee->conf.allow_p2p)
&& (eee->conf.preferred_sock.family == (uint8_t)AF_INVALID)) {
/* send registration to the local multicast group */
traceEvent(TRACE_DEBUG, "registering with multicast group %s:%u",
N2N_MULTICAST_GROUP, N2N_MULTICAST_PORT);
send_register(eee, &(eee->multicast_peer), NULL, N2N_MCAST_REG_COOKIE);
}
#else
traceEvent(TRACE_DEBUG, "multicast peers discovery is disabled, skipping");
#endif
}
/* ************************************** */
static struct peer_info* find_peer_by_sock (const n2n_sock_t *sock, struct peer_info *peer_list) {
struct peer_info *scan, *tmp, *ret = NULL;
HASH_ITER(hh, peer_list, scan, tmp) {
if(memcmp(&(scan->sock), sock, sizeof(n2n_sock_t)) == 0) {
ret = scan;
break;
}
}
return ret;
}
/* ************************************** */
/** Start the registration process.
*
* If the peer is already in pending_peers, ignore the request.
* If not in pending_peers, add it and send a REGISTER.
*
* If hdr is for a direct peer-to-peer packet, try to register back to sender
* even if the MAC is in pending_peers. This is because an incident direct
* packet indicates that peer-to-peer exchange should work so more aggressive
* registration can be permitted (once per incoming packet) as this should only
* last for a small number of packets..
*
* Called from the main loop when Rx a packet for our device mac.
*/
static void register_with_new_peer (n2n_edge_t *eee,
uint8_t from_supernode,
uint8_t via_multicast,
const n2n_mac_t mac,
const n2n_ip_subnet_t *dev_addr,
const n2n_desc_t *dev_desc,
const n2n_sock_t *peer) {
/* REVISIT: purge of pending_peers not yet done. */
struct peer_info *scan;
macstr_t mac_buf;
n2n_sock_str_t sockbuf;
HASH_FIND_PEER(eee->pending_peers, mac, scan);
/* NOTE: pending_peers are purged periodically with purge_expired_nodes */
if(scan == NULL) {
scan = calloc(1, sizeof(struct peer_info));
memcpy(scan->mac_addr, mac, N2N_MAC_SIZE);
scan->sock = *peer;
scan->timeout = eee->conf.register_interval; /* TODO: should correspond to the peer supernode registration timeout */
scan->last_valid_time_stamp = initial_time_stamp();
if(via_multicast)
scan->local = 1;
HASH_ADD_PEER(eee->pending_peers, scan);
traceEvent(TRACE_DEBUG, "new pending peer %s [%s]",
macaddr_str(mac_buf, scan->mac_addr),
sock_to_cstr(sockbuf, &(scan->sock)));
traceEvent(TRACE_DEBUG, "pending peers list size=%u",
HASH_COUNT(eee->pending_peers));
/* trace Sending REGISTER */
if(from_supernode) {
/* UDP NAT hole punching through supernode. Send to peer first(punch local UDP hole)
* and then ask supernode to forward. Supernode then ask peer to ack. Some nat device
* drop and block ports with incoming UDP packet if out-come traffic does not exist.
* So we can alternatively set TTL so that the packet sent to peer never really reaches
* The register_ttl is basically nat level + 1. Set it to 1 means host like DMZ.
*/
if(eee->conf.register_ttl == 1) {
/* We are DMZ host or port is directly accessible. Just let peer to send back the ack */
#ifndef WIN32
} else if(eee->conf.register_ttl > 1) {
/* Setting register_ttl usually implies that the edge knows the internal net topology
* clearly, we can apply aggressive port prediction to support incoming Symmetric NAT
*/
int curTTL = 0;
socklen_t lenTTL = sizeof(int);
n2n_sock_t sock = scan->sock;
int alter = 16; /* TODO: set by command line or more reliable prediction method */
getsockopt(eee->sock, IPPROTO_IP, IP_TTL, (void *) (char *) &curTTL, &lenTTL);
setsockopt(eee->sock, IPPROTO_IP, IP_TTL,
(void *) (char *) &eee->conf.register_ttl,
sizeof(eee->conf.register_ttl));
for(; alter > 0; alter--, sock.port++) {
send_register(eee, &sock, mac, N2N_PORT_REG_COOKIE);
}
setsockopt(eee->sock, IPPROTO_IP, IP_TTL, (void *) (char *) &curTTL, sizeof(curTTL));
#endif
} else { /* eee->conf.register_ttl <= 0 */
/* Normal STUN */
send_register(eee, &(scan->sock), mac, N2N_REGULAR_REG_COOKIE);
}
send_register(eee, &(eee->curr_sn->sock), mac, N2N_FORWARDED_REG_COOKIE);
} else {
/* P2P register, send directly */
send_register(eee, &(scan->sock), mac, N2N_REGULAR_REG_COOKIE);
}
register_with_local_peers(eee);
} else{
scan->sock = *peer;
}
scan->last_seen = time(NULL);
if(dev_addr != NULL) {
memcpy(&(scan->dev_addr), dev_addr, sizeof(n2n_ip_subnet_t));
}
if(dev_desc) memcpy(scan->dev_desc, dev_desc, N2N_DESC_SIZE);
}
/* ************************************** */
/** Update the last_seen time for this peer, or get registered. */
static void check_peer_registration_needed (n2n_edge_t *eee,
uint8_t from_supernode,
uint8_t via_multicast,
const n2n_mac_t mac,
const n2n_cookie_t cookie,
const n2n_ip_subnet_t *dev_addr,
const n2n_desc_t *dev_desc,
const n2n_sock_t *peer) {
struct peer_info *scan;
HASH_FIND_PEER(eee->known_peers, mac, scan);
/* If we were not able to find it by MAC, we try to find it by socket. */
if(scan == NULL ) {
scan = find_peer_by_sock(peer, eee->known_peers);
// MAC change
if(scan) {
HASH_DEL(eee->known_peers, scan);
memcpy(scan->mac_addr, mac, sizeof(n2n_mac_t));
HASH_ADD_PEER(eee->known_peers, scan);
// reset last_local_reg to allow re-registration
scan->last_cookie = N2N_NO_REG_COOKIE;
}
}
if(scan == NULL) {
/* Not in known_peers - start the REGISTER process. */
register_with_new_peer(eee, from_supernode, via_multicast, mac, dev_addr, dev_desc, peer);
} else {
/* Already in known_peers. */
time_t now = time(NULL);
if(!from_supernode)
scan->last_p2p = now;
if(via_multicast)
scan->local = 1;
if(((now - scan->last_seen) > 0 /* >= 1 sec */)
||(cookie > scan->last_cookie)) {
/* Don't register too often */
check_known_peer_sock_change(eee, from_supernode, via_multicast, mac, dev_addr, dev_desc, peer, now);
}
}
}
/* ************************************** */
/* Confirm that a pending peer is reachable directly via P2P.
*
* peer must be a pointer to an element of the pending_peers list.
*/
static void peer_set_p2p_confirmed (n2n_edge_t * eee,
const n2n_mac_t mac,
const n2n_cookie_t cookie,
const n2n_sock_t * peer,
time_t now) {
struct peer_info *scan, *scan_tmp;
macstr_t mac_buf;
n2n_sock_str_t sockbuf;
HASH_FIND_PEER(eee->pending_peers, mac, scan);
if(scan == NULL) {
scan = find_peer_by_sock(peer, eee->pending_peers);
// in case of MAC change, reset last_local_reg to allow re-registration
if(scan)
scan->last_cookie = N2N_NO_REG_COOKIE;
}
if(scan) {
HASH_DEL(eee->pending_peers, scan);
scan_tmp = find_peer_by_sock(peer, eee->known_peers);
if(scan_tmp != NULL) {
HASH_DEL(eee->known_peers, scan_tmp);
free(scan);
scan = scan_tmp;
memcpy(scan->mac_addr, mac, sizeof(n2n_mac_t));
// in case of MAC change, reset cookie to allow immediate re-registration
scan->last_cookie = N2N_NO_REG_COOKIE;
} else {
// update sock but ...
// ... ignore ACKs's (and their socks) from lower ranked inbound ways for a while
if(((now - scan->last_seen) > REGISTRATION_TIMEOUT / 4)
||(cookie > scan->last_cookie)) {
scan->sock = *peer;
scan->last_cookie = cookie;
}
}
HASH_ADD_PEER(eee->known_peers, scan);
scan->last_p2p = now;
traceEvent(TRACE_DEBUG, "p2p connection established: %s [%s]",
macaddr_str(mac_buf, mac),
sock_to_cstr(sockbuf, peer));
traceEvent(TRACE_DEBUG, "new peer %s [%s]",
macaddr_str(mac_buf, scan->mac_addr),
sock_to_cstr(sockbuf, &(scan->sock)));
traceEvent(TRACE_DEBUG, "pending peers list size=%u",
HASH_COUNT(eee->pending_peers));
traceEvent(TRACE_DEBUG, "known peers list size=%u",
HASH_COUNT(eee->known_peers));
scan->last_seen = now;
} else
traceEvent(TRACE_DEBUG, "failed to find sender in pending_peers");
}
/* ************************************** */
// provides the current / a new local auth token
static int get_local_auth (n2n_edge_t *eee, n2n_auth_t *auth) {
switch(eee->conf.auth.scheme) {
case n2n_auth_simple_id:
memcpy(auth, &(eee->conf.auth), sizeof(n2n_auth_t));
break;
case n2n_auth_user_password:
// start from the locally stored complete auth token (including type and size fields)
memcpy(auth, &(eee->conf.auth), sizeof(n2n_auth_t));
// the token data consists of
// 32 bytes public key
// 16 bytes random challenge
// generate a new random auth challenge every time
memrnd(auth->token + N2N_PRIVATE_PUBLIC_KEY_SIZE, N2N_AUTH_CHALLENGE_SIZE);
// store it in local auth token (for comparison later)
memcpy(eee->conf.auth.token + N2N_PRIVATE_PUBLIC_KEY_SIZE, auth->token + N2N_PRIVATE_PUBLIC_KEY_SIZE, N2N_AUTH_CHALLENGE_SIZE);
// encrypt the challenge for transmission
speck_128_encrypt(auth->token + N2N_PRIVATE_PUBLIC_KEY_SIZE, (speck_context_t*)eee->conf.shared_secret_ctx);
break;
default:
break;
}
return 0;
}
// handles a returning (remote) auth token, takes action as required by auth scheme
static int handle_remote_auth (n2n_edge_t *eee, struct peer_info *peer, const n2n_auth_t *remote_auth) {
uint8_t tmp_token[N2N_AUTH_MAX_TOKEN_SIZE];
switch(eee->conf.auth.scheme) {
case n2n_auth_simple_id:
// no action required
break;
case n2n_auth_user_password:
memcpy(tmp_token, remote_auth->token, N2N_AUTH_PW_TOKEN_SIZE);
// the returning token data consists of
// 16 bytes double-encrypted challenge
// 16 bytes public key (second half)
// 16 bytes encrypted (original random challenge XOR shared secret XOR dynamic key)
// decrypt double-encrypted received challenge (first half of public key field)
speck_128_decrypt(tmp_token, (speck_context_t*)eee->conf.shared_secret_ctx);
speck_128_decrypt(tmp_token, (speck_context_t*)eee->conf.shared_secret_ctx);
// compare to original challenge
if(0 != memcmp(tmp_token, eee->conf.auth.token + N2N_PRIVATE_PUBLIC_KEY_SIZE, N2N_AUTH_CHALLENGE_SIZE))
return -1;
// decrypt the received challenge in which the dynamic key is wrapped
speck_128_decrypt(tmp_token + N2N_PRIVATE_PUBLIC_KEY_SIZE, (speck_context_t*)eee->conf.shared_secret_ctx);
// un-XOR the original challenge
memxor(tmp_token + N2N_PRIVATE_PUBLIC_KEY_SIZE, eee->conf.auth.token + N2N_PRIVATE_PUBLIC_KEY_SIZE, N2N_AUTH_CHALLENGE_SIZE);
// un-XOR the shared secret
memxor(tmp_token + N2N_PRIVATE_PUBLIC_KEY_SIZE, *(eee->conf.shared_secret), N2N_AUTH_CHALLENGE_SIZE);
// setup for use as dynamic key
packet_header_change_dynamic_key(tmp_token + N2N_PRIVATE_PUBLIC_KEY_SIZE,
&(eee->conf.header_encryption_ctx_dynamic),
&(eee->conf.header_iv_ctx_dynamic));
break;
default:
break;
}
return 0;
}
/* ************************************** */
int is_empty_ip_address (const n2n_sock_t * sock) {
const uint8_t * ptr = NULL;
size_t len = 0;
size_t i;
if(AF_INET6 == sock->family) {
ptr = sock->addr.v6;
len = 16;
} else {
ptr = sock->addr.v4;
len = 4;
}
for(i = 0; i < len; ++i) {
if(0 != ptr[i]) {
/* found a non-zero byte in address */
return 0;
}
}
return 1;
}
/* ************************************** */
/** Check if a known peer socket has changed and possibly register again.
*/
static void check_known_peer_sock_change (n2n_edge_t *eee,
uint8_t from_supernode,
uint8_t via_multicast,
const n2n_mac_t mac,
const n2n_ip_subnet_t *dev_addr,
const n2n_desc_t *dev_desc,
const n2n_sock_t *peer,
time_t when) {
struct peer_info *scan;
n2n_sock_str_t sockbuf1;
n2n_sock_str_t sockbuf2; /* don't clobber sockbuf1 if writing two addresses to trace */
macstr_t mac_buf;
if(is_empty_ip_address(peer))
return;
if(is_multi_broadcast(mac))
return;
/* Search the peer in known_peers */
HASH_FIND_PEER(eee->known_peers, mac, scan);
if(!scan)
/* Not in known_peers */
return;
if(!sock_equal(&(scan->sock), peer)) {
if(!from_supernode) {
/* This is a P2P packet */
traceEvent(TRACE_NORMAL, "peer %s changed [%s] -> [%s]",
macaddr_str(mac_buf, scan->mac_addr),
sock_to_cstr(sockbuf1, &(scan->sock)),
sock_to_cstr(sockbuf2, peer));
/* The peer has changed public socket. It can no longer be assumed to be reachable. */
HASH_DEL(eee->known_peers, scan);
free(scan);
register_with_new_peer(eee, from_supernode, via_multicast, mac, dev_addr, dev_desc, peer);
} else {
/* Don't worry about what the supernode reports, it could be seeing a different socket. */
}
} else
scan->last_seen = when;
}
/* ************************************** */
/** Send a datagram to a socket file descriptor */
static ssize_t sendto_fd (n2n_edge_t *eee, const void *buf,
size_t len, struct sockaddr_in *dest) {
ssize_t sent = 0;
int rc = 1;
// if required (tcp), wait until writeable as soket is set to O_NONBLOCK, could require
// some wait time directly after re-opening
if(eee->conf.connect_tcp) {
fd_set socket_mask;
struct timeval wait_time;
FD_ZERO(&socket_mask);
FD_SET(eee->sock, &socket_mask);
wait_time.tv_sec = 0;
wait_time.tv_usec = 500000;
rc = select(eee->sock + 1, NULL, &socket_mask, NULL, &wait_time);
}
if(rc > 0) {
sent = sendto(eee->sock, buf, len, 0 /*flags*/,
(struct sockaddr *)dest, sizeof(struct sockaddr_in));
if((sent <= 0) && (errno)) {
char * c = strerror(errno);
// downgrade to TRACE_DEBUG in case of custom AF_INVALID, i.e. supernode not resolved yet
if(errno == EAFNOSUPPORT /* 93 */) {
traceEvent(TRACE_DEBUG, "sendto failed (%d) %s", errno, c);
#ifdef WIN32
traceEvent(TRACE_DEBUG, "WSAGetLastError(): %u", WSAGetLastError());
#endif
} else {
traceEvent(TRACE_WARNING, "sendto failed (%d) %s", errno, c);
#ifdef WIN32
traceEvent(TRACE_WARNING, "WSAGetLastError(): %u", WSAGetLastError());
#endif
}
if(eee->conf.connect_tcp) {
supernode_disconnect(eee);
eee->sn_wait = 1;
traceEvent(TRACE_DEBUG, "disconnected supernode due to sendto() error");
return -1;
}
} else {
traceEvent(TRACE_DEBUG, "sent=%d to ", (signed int)sent);
}
} else {
supernode_disconnect(eee);
eee->sn_wait = 1;
traceEvent(TRACE_DEBUG, "disconnected supernode due to select() timeout");
return -1;
}
return sent;
}
/** Send a datagram to a socket defined by a n2n_sock_t */
static ssize_t sendto_sock (n2n_edge_t *eee, const void * buf,
size_t len, const n2n_sock_t * dest) {
struct sockaddr_in peer_addr;
ssize_t sent;
int value = 0;
if(!dest->family)
// invalid socket
return 0;
if(eee->sock < 0)
// invalid socket file descriptor, e.g. TCP unconnected has fd of '-1'
return 0;
// network order socket
fill_sockaddr((struct sockaddr *) &peer_addr, sizeof(peer_addr), dest);
// if the connection is tcp, i.e. not the regular sock...
if(eee->conf.connect_tcp) {
setsockopt(eee->sock, IPPROTO_TCP, TCP_NODELAY, &value, sizeof(value));
value = 1;
#ifdef LINUX
setsockopt(eee->sock, IPPROTO_TCP, TCP_CORK, &value, sizeof(value));
#endif
// prepend packet length...
uint16_t pktsize16 = htobe16(len);
sent = sendto_fd(eee, (uint8_t*)&pktsize16, sizeof(pktsize16), &peer_addr);
if(sent <= 0)
return -1;
// ...before sending the actual data
}
sent = sendto_fd(eee, buf, len, &peer_addr);
// if the connection is tcp, i.e. not the regular sock...
if(eee->conf.connect_tcp) {
value = 1; /* value should still be set to 1 */
setsockopt(eee->sock, IPPROTO_TCP, TCP_NODELAY, &value, sizeof(value));
#ifdef LINUX
value = 0;
setsockopt(eee->sock, IPPROTO_TCP, TCP_CORK, &value, sizeof(value));
#endif
}
return sent;
}
/* ************************************** */
/* Bind eee->udp_multicast_sock to multicast group */
static void check_join_multicast_group (n2n_edge_t *eee) {
#ifndef SKIP_MULTICAST_PEERS_DISCOVERY
if((eee->conf.allow_p2p)
&& (eee->conf.preferred_sock.family == (uint8_t)AF_INVALID)) {
if(!eee->multicast_joined) {
struct ip_mreq mreq;
mreq.imr_multiaddr.s_addr = inet_addr(N2N_MULTICAST_GROUP);
#ifdef WIN32
dec_ip_str_t ip_addr;
get_best_interface_ip(eee, ip_addr);
mreq.imr_interface.s_addr = inet_addr(ip_addr);
#else
mreq.imr_interface.s_addr = htonl(INADDR_ANY);
#endif
if(setsockopt(eee->udp_multicast_sock, IPPROTO_IP, IP_ADD_MEMBERSHIP, (char *)&mreq, sizeof(mreq)) < 0) {
traceEvent(TRACE_WARNING, "failed to bind to local multicast group %s:%u [errno %u]",
N2N_MULTICAST_GROUP, N2N_MULTICAST_PORT, errno);
#ifdef WIN32
traceEvent(TRACE_WARNING, "WSAGetLastError(): %u", WSAGetLastError());
#endif
} else {
traceEvent(TRACE_NORMAL, "successfully joined multicast group %s:%u",
N2N_MULTICAST_GROUP, N2N_MULTICAST_PORT);
eee->multicast_joined = 1;
}
}
}
#endif
}
/* ************************************** */
/** Send a QUERY_PEER packet to the current supernode. */
void send_query_peer (n2n_edge_t * eee,
const n2n_mac_t dst_mac) {
uint8_t pktbuf[N2N_PKT_BUF_SIZE];
size_t idx;
n2n_common_t cmn = {0};
n2n_QUERY_PEER_t query = {0};
struct peer_info *peer, *tmp;
int n_o_pings = 0;
int n_o_top_sn = 0;
int n_o_rest_sn = 0;
int n_o_skip_sn = 0;
cmn.ttl = N2N_DEFAULT_TTL;
cmn.pc = n2n_query_peer;
cmn.flags = 0;
memcpy(cmn.community, eee->conf.community_name, N2N_COMMUNITY_SIZE);
idx = 0;
encode_mac(query.srcMac, &idx, eee->device.mac_addr);
idx = 0;
encode_mac(query.targetMac, &idx, dst_mac);
idx = 0;
encode_QUERY_PEER(pktbuf, &idx, &cmn, &query);
if(!is_null_mac(dst_mac)) {
traceEvent(TRACE_DEBUG, "send QUERY_PEER to supernode");
if(eee->conf.header_encryption == HEADER_ENCRYPTION_ENABLED) {
packet_header_encrypt(pktbuf, idx, idx,
eee->conf.header_encryption_ctx_dynamic, eee->conf.header_iv_ctx_dynamic,
time_stamp());
}
sendto_sock(eee, pktbuf, idx, &(eee->curr_sn->sock));
} else {
traceEvent(TRACE_DEBUG, "send PING to supernodes");
if(eee->conf.header_encryption == HEADER_ENCRYPTION_ENABLED) {
packet_header_encrypt(pktbuf, idx, idx,
eee->conf.header_encryption_ctx_dynamic, eee->conf.header_iv_ctx_dynamic,
time_stamp());
}
n_o_pings = eee->conf.number_max_sn_pings;
eee->conf.number_max_sn_pings = NUMBER_SN_PINGS_REGULAR;
// ping the 'floor(n/2)' top supernodes and 'ceiling(n/2)' of the remaining
n_o_top_sn = n_o_pings >> 1;
n_o_rest_sn = (n_o_pings + 1) >> 1;
// skip a random number of supernodes between top and remaining
n_o_skip_sn = HASH_COUNT(eee->conf.supernodes) - n_o_pings;
n_o_skip_sn = (n_o_skip_sn < 0) ? 0 : n2n_rand_sqr(n_o_skip_sn);
HASH_ITER(hh, eee->conf.supernodes, peer, tmp) {
if(n_o_top_sn) {
n_o_top_sn--;
// fall through (send to top supernode)
} else if(n_o_skip_sn) {
n_o_skip_sn--;
// skip (do not send)
continue;
} else if(n_o_rest_sn) {
n_o_rest_sn--;
// fall through (send to remaining supernode)
} else {
// done with the remaining (do not send anymore)
break;
}
sendto_sock(eee, pktbuf, idx, &(peer->sock));
}
}
}
/* ******************************************************** */
/** Send a REGISTER_SUPER packet to the current supernode. */
void send_register_super (n2n_edge_t *eee) {
uint8_t pktbuf[N2N_PKT_BUF_SIZE] = {0};
uint8_t hash_buf[16] = {0};
size_t idx;
/* ssize_t sent; */
n2n_common_t cmn;
n2n_REGISTER_SUPER_t reg;
n2n_sock_str_t sockbuf;
memset(&cmn, 0, sizeof(cmn));
memset(&reg, 0, sizeof(reg));
cmn.ttl = N2N_DEFAULT_TTL;
cmn.pc = n2n_register_super;
if(eee->conf.preferred_sock.family == (uint8_t)AF_INVALID) {
cmn.flags = 0;
} else {
cmn.flags = N2N_FLAGS_SOCKET;
memcpy(&(reg.sock), &(eee->conf.preferred_sock), sizeof(n2n_sock_t));
}
memcpy(cmn.community, eee->conf.community_name, N2N_COMMUNITY_SIZE);
eee->curr_sn->last_cookie = n2n_rand();
reg.cookie = eee->curr_sn->last_cookie;
reg.dev_addr.net_addr = ntohl(eee->device.ip_addr);
reg.dev_addr.net_bitlen = mask2bitlen(ntohl(eee->device.device_mask));
memcpy(reg.dev_desc, eee->conf.dev_desc, N2N_DESC_SIZE);
get_local_auth(eee, &(reg.auth));
idx = 0;
encode_mac(reg.edgeMac, &idx, eee->device.mac_addr);
idx = 0;
encode_REGISTER_SUPER(pktbuf, &idx, &cmn, &reg);
traceEvent(TRACE_DEBUG, "send REGISTER_SUPER to [%s]",
sock_to_cstr(sockbuf, &(eee->curr_sn->sock)));
if(eee->conf.header_encryption == HEADER_ENCRYPTION_ENABLED) {
packet_header_encrypt(pktbuf, idx, idx,
eee->conf.header_encryption_ctx_static, eee->conf.header_iv_ctx_static,
time_stamp());
if(eee->conf.shared_secret) {
pearson_hash_128(hash_buf, pktbuf, idx);
speck_128_encrypt(hash_buf, (speck_context_t*)eee->conf.shared_secret_ctx);
encode_buf(pktbuf, &idx, hash_buf, N2N_REG_SUP_HASH_CHECK_LEN);
}
}
/* sent = */ sendto_sock(eee, pktbuf, idx, &(eee->curr_sn->sock));
}
static void send_unregister_super (n2n_edge_t *eee) {
uint8_t pktbuf[N2N_PKT_BUF_SIZE] = {0};
size_t idx;
/* ssize_t sent; */
n2n_common_t cmn;
n2n_UNREGISTER_SUPER_t unreg;
n2n_sock_str_t sockbuf;
memset(&cmn, 0, sizeof(cmn));
memset(&unreg, 0, sizeof(unreg));
cmn.ttl = N2N_DEFAULT_TTL;
cmn.pc = n2n_unregister_super;
cmn.flags = 0;
memcpy(cmn.community, eee->conf.community_name, N2N_COMMUNITY_SIZE);
get_local_auth(eee, &(unreg.auth));
idx = 0;
encode_mac(unreg.srcMac, &idx, eee->device.mac_addr);
idx = 0;
encode_UNREGISTER_SUPER(pktbuf, &idx, &cmn, &unreg);
traceEvent(TRACE_DEBUG, "send UNREGISTER_SUPER to [%s]",
sock_to_cstr(sockbuf, &(eee->curr_sn->sock)));
if(eee->conf.header_encryption == HEADER_ENCRYPTION_ENABLED)
packet_header_encrypt(pktbuf, idx, idx,
eee->conf.header_encryption_ctx_dynamic, eee->conf.header_iv_ctx_dynamic,
time_stamp());
/* sent = */ sendto_sock(eee, pktbuf, idx, &(eee->curr_sn->sock));
}
static int sort_supernodes (n2n_edge_t *eee, time_t now) {
struct peer_info *scan, *tmp;
if(now - eee->last_sweep > SWEEP_TIME) {
// this routine gets periodically called
if(!eee->sn_wait) {
// sort supernodes in ascending order of their selection_criterion fields
sn_selection_sort(&(eee->conf.supernodes));
}
if(eee->curr_sn != eee->conf.supernodes) {
// we have not been connected to the best/top one
send_unregister_super(eee);
eee->curr_sn = eee->conf.supernodes;
reset_sup_attempts(eee);
supernode_connect(eee);
traceEvent(TRACE_INFO, "registering with supernode [%s][number of supernodes %d][attempts left %u]",
supernode_ip(eee), HASH_COUNT(eee->conf.supernodes), (unsigned int)eee->sup_attempts);
send_register_super(eee);
eee->last_register_req = now;
eee->sn_wait = 1;
}
HASH_ITER(hh, eee->conf.supernodes, scan, tmp) {
if(scan == eee->curr_sn)
sn_selection_criterion_good(&(scan->selection_criterion));
else
sn_selection_criterion_default(&(scan->selection_criterion));
}
sn_selection_criterion_common_data_default(eee);
// send PING to all the supernodes
if(!eee->conf.connect_tcp)
send_query_peer(eee, null_mac);
eee->last_sweep = now;
// no answer yet (so far, unused in regular edge code; mainly used during bootstrap loading)
eee->sn_pong = 0;
}
return 0; /* OK */
}
/** Send a REGISTER packet to another edge. */
static void send_register (n2n_edge_t * eee,
const n2n_sock_t * remote_peer,
const n2n_mac_t peer_mac,
const n2n_cookie_t cookie) {
uint8_t pktbuf[N2N_PKT_BUF_SIZE];
size_t idx;
/* ssize_t sent; */
n2n_common_t cmn;
n2n_REGISTER_t reg;
n2n_sock_str_t sockbuf;
if(!eee->conf.allow_p2p) {
traceEvent(TRACE_DEBUG, "skipping register as P2P is disabled");
return;
}
memset(&cmn, 0, sizeof(cmn));
memset(&reg, 0, sizeof(reg));
cmn.ttl = N2N_DEFAULT_TTL;
cmn.pc = n2n_register;
cmn.flags = 0;
memcpy(cmn.community, eee->conf.community_name, N2N_COMMUNITY_SIZE);
reg.cookie = cookie;
idx = 0;
encode_mac(reg.srcMac, &idx, eee->device.mac_addr);
if(peer_mac) {
// can be NULL for multicast registrations
idx = 0;
encode_mac(reg.dstMac, &idx, peer_mac);
}
reg.dev_addr.net_addr = ntohl(eee->device.ip_addr);
reg.dev_addr.net_bitlen = mask2bitlen(ntohl(eee->device.device_mask));
memcpy(reg.dev_desc, eee->conf.dev_desc, N2N_DESC_SIZE);
idx = 0;
encode_REGISTER(pktbuf, &idx, &cmn, &reg);
traceEvent(TRACE_INFO, "send REGISTER to [%s]",
sock_to_cstr(sockbuf, remote_peer));
if(eee->conf.header_encryption == HEADER_ENCRYPTION_ENABLED)
packet_header_encrypt(pktbuf, idx, idx,
eee->conf.header_encryption_ctx_dynamic, eee->conf.header_iv_ctx_dynamic,
time_stamp());
/* sent = */ sendto_sock(eee, pktbuf, idx, remote_peer);
}
/* ************************************** */
/** Send a REGISTER_ACK packet to a peer edge. */
static void send_register_ack (n2n_edge_t * eee,
const n2n_sock_t * remote_peer,
const n2n_REGISTER_t * reg) {
uint8_t pktbuf[N2N_PKT_BUF_SIZE];
size_t idx;
/* ssize_t sent; */
n2n_common_t cmn;
n2n_REGISTER_ACK_t ack;
n2n_sock_str_t sockbuf;
if(!eee->conf.allow_p2p) {
traceEvent(TRACE_DEBUG, "skipping register ACK as P2P is disabled");
return;
}
memset(&cmn, 0, sizeof(cmn));
memset(&ack, 0, sizeof(reg));
cmn.ttl = N2N_DEFAULT_TTL;
cmn.pc = n2n_register_ack;
cmn.flags = 0;
memcpy(cmn.community, eee->conf.community_name, N2N_COMMUNITY_SIZE);
memset(&ack, 0, sizeof(ack));
ack.cookie = reg->cookie;
memcpy(ack.srcMac, eee->device.mac_addr, N2N_MAC_SIZE);
memcpy(ack.dstMac, reg->srcMac, N2N_MAC_SIZE);
idx = 0;
encode_REGISTER_ACK(pktbuf, &idx, &cmn, &ack);
traceEvent(TRACE_INFO, "send REGISTER_ACK to [%s]",
sock_to_cstr(sockbuf, remote_peer));
if(eee->conf.header_encryption == HEADER_ENCRYPTION_ENABLED)
packet_header_encrypt(pktbuf, idx, idx,
eee->conf.header_encryption_ctx_dynamic, eee->conf.header_iv_ctx_dynamic,
time_stamp());
/* sent = */ sendto_sock(eee, pktbuf, idx, remote_peer);
}
/* ************************************** */
static char gratuitous_arp[] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* dest MAC */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* src MAC */
0x08, 0x06, /* ARP */
0x00, 0x01, /* ethernet */
0x08, 0x00, /* IP */
0x06, /* hw Size */
0x04, /* protocol Size */
0x00, 0x02, /* ARP reply */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* src MAC */
0x00, 0x00, 0x00, 0x00, /* src IP */
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* target MAC */
0x00, 0x00, 0x00, 0x00 /* target IP */
};
// build a gratuitous ARP packet */
static int build_gratuitous_arp (n2n_edge_t * eee, char *buffer, uint16_t buffer_len) {
if(buffer_len < sizeof(gratuitous_arp)) return(-1);
memcpy(buffer, gratuitous_arp, sizeof(gratuitous_arp));
memcpy(&buffer[6], eee->device.mac_addr, 6);
memcpy(&buffer[22], eee->device.mac_addr, 6);
memcpy(&buffer[28], &(eee->device.ip_addr), 4);
memcpy(&buffer[38], &(eee->device.ip_addr), 4);
return(sizeof(gratuitous_arp));
}
/** Called from update_supernode_reg to periodically send gratuitous ARP
* broadcasts. */
static void send_grat_arps (n2n_edge_t * eee) {
uint8_t buffer[48];
size_t len;
traceEvent(TRACE_DEBUG, "sending gratuitous ARP...");
len = build_gratuitous_arp(eee, (char*)buffer, sizeof(buffer));
edge_send_packet2net(eee, buffer, len);
edge_send_packet2net(eee, buffer, len); /* Two is better than one :-) */
}
/* ************************************** */
/** @brief Check to see if we should re-register with the supernode.
*
* This is frequently called by the main loop.
*/
void update_supernode_reg (n2n_edge_t * eee, time_t now) {
struct peer_info *peer, *tmp_peer;
int cnt = 0;
int off = 0;
if((eee->sn_wait && (now > (eee->last_register_req + (eee->conf.register_interval / 10))))
||(eee->sn_wait == 2)) /* immediately re-register in case of RE_REGISTER_SUPER */ {
/* fall through */
traceEvent(TRACE_DEBUG, "update_supernode_reg: doing fast retry.");
} else if(now < (eee->last_register_req + eee->conf.register_interval))
return; /* Too early */
// determine time offset to apply on last_register_req for
// all edges's next re-registration does not happen all at once
if(eee->sn_wait == 2) {
// remaining 1/4 is greater than 1/10 fast retry allowance;
// '%' might be expensive but does not happen all too often
off = n2n_rand() % ((eee->conf.register_interval * 3) / 4);
}
check_join_multicast_group(eee);
if(0 == eee->sup_attempts) {
/* Give up on that supernode and try the next one. */
sn_selection_criterion_bad(&(eee->curr_sn->selection_criterion));
sn_selection_sort(&(eee->conf.supernodes));
eee->curr_sn = eee->conf.supernodes;
traceEvent(TRACE_WARNING, "supernode not responding, now trying [%s]", supernode_ip(eee));
supernode_connect(eee);
reset_sup_attempts(eee);
// trigger out-of-schedule DNS resolution
eee->resolution_request = 1;
// in some multi-NATed scenarios communication gets stuck on losing connection to supernode
// closing and re-opening the socket allows for re-establishing communication
// this can only be done, if working on some unprivileged port and/or having sufficent
// privileges. as we are not able to check for sufficent privileges here, we only do it
// if port is sufficently high or unset. uncovered: privileged port and sufficent privileges
if((eee->conf.local_port == 0) || (eee->conf.local_port > 1024)) {
// do not explicitly disconnect every time as the condition described is rare, so ...
// ... check that there are no external peers (indicating a working socket) ...
HASH_ITER(hh, eee->known_peers, peer, tmp_peer)
if(!peer->local) {
cnt++;
break;
}
if(!cnt) {
// ... and then count the connection retries
(eee->close_socket_counter)++;
if(eee->close_socket_counter >= N2N_CLOSE_SOCKET_COUNTER_MAX) {
eee->close_socket_counter = 0;
supernode_disconnect(eee);
traceEvent(TRACE_DEBUG, "disconnected supernode");
}
}
supernode_connect(eee);
traceEvent(TRACE_DEBUG, "reconnected to supernode");
}
} else {
--(eee->sup_attempts);
}
#ifndef HAVE_PTHREAD
if(supernode2sock(&(eee->curr_sn->sock), eee->curr_sn->ip_addr) == 0) {
#endif
traceEvent(TRACE_INFO, "registering with supernode [%s][number of supernodes %d][attempts left %u]",
supernode_ip(eee), HASH_COUNT(eee->conf.supernodes), (unsigned int)eee->sup_attempts);
send_register_super(eee);
#ifndef HAVE_PTHREAD
}
#endif
register_with_local_peers(eee);
// if supernode repeatedly not responding (already waiting), safeguard the
// current known connections to peers by re-registering
if(eee->sn_wait == 1)
HASH_ITER(hh, eee->known_peers, peer, tmp_peer)
if((now - peer->last_seen) > REGISTER_SUPER_INTERVAL_DFL)
send_register(eee, &(peer->sock), peer->mac_addr, peer->last_cookie);
eee->sn_wait = 1;
eee->last_register_req = now - off;
}
/* ************************************** */
/** Return the IP address of the current supernode in the ring. */
static const char * supernode_ip (const n2n_edge_t * eee) {
return (eee->curr_sn->ip_addr);
}
/* ************************************** */
/** A PACKET has arrived containing an encapsulated ethernet datagram - usually
* encrypted. */
static int handle_PACKET (n2n_edge_t * eee,
const uint8_t from_supernode,
const n2n_PACKET_t * pkt,
const n2n_sock_t * orig_sender,
uint8_t * payload,
size_t psize) {
ssize_t data_sent_len;
uint8_t * eth_payload = NULL;
int retval = -1;
time_t now;
ether_hdr_t * eh;
ipstr_t ip_buf;
macstr_t mac_buf;
n2n_sock_str_t sockbuf;
now = time(NULL);
traceEvent(TRACE_DEBUG, "handle_PACKET size %u transform %u",
(unsigned int)psize, (unsigned int)pkt->transform);
/* hexdump(payload, psize); */
if(from_supernode) {
if(is_multi_broadcast(pkt->dstMac))
++(eee->stats.rx_sup_broadcast);
++(eee->stats.rx_sup);
eee->last_sup = now;
} else {
++(eee->stats.rx_p2p);
eee->last_p2p=now;
}
/* Handle transform. */
{
uint8_t decodebuf[N2N_PKT_BUF_SIZE];
size_t eth_size;
n2n_transform_t rx_transop_id;
uint8_t rx_compression_id;
rx_transop_id = (n2n_transform_t)pkt->transform;
rx_compression_id = pkt->compression;
if(rx_transop_id == eee->conf.transop_id) {
uint8_t is_multicast;
eth_payload = decodebuf;
eh = (ether_hdr_t*)eth_payload;
eth_size = eee->transop.rev(&eee->transop,
eth_payload, N2N_PKT_BUF_SIZE,
payload, psize, pkt->srcMac);
++(eee->transop.rx_cnt); /* stats */
/* decompress if necessary */
uint8_t * deflation_buffer = 0;
lzo_uint deflated_len;
switch(rx_compression_id) {
case N2N_COMPRESSION_ID_NONE:
break; // continue afterwards
case N2N_COMPRESSION_ID_LZO:
deflation_buffer = malloc(N2N_PKT_BUF_SIZE);
lzo1x_decompress(eth_payload, eth_size, deflation_buffer, &deflated_len, NULL);
break;
#ifdef N2N_HAVE_ZSTD
case N2N_COMPRESSION_ID_ZSTD:
deflated_len = N2N_PKT_BUF_SIZE;
deflation_buffer = malloc(deflated_len);
deflated_len = ZSTD_decompress(deflation_buffer, deflated_len, eth_payload, eth_size);
if(ZSTD_isError(deflated_len)) {
traceEvent(TRACE_WARNING, "payload decompression failed with zstd error '%s'.",
ZSTD_getErrorName(deflated_len));
free(deflation_buffer);
return(-1); // cannot help it
}
break;
#endif
default:
traceEvent(TRACE_WARNING, "payload decompression failed: received packet indicating unsupported %s compression.",
compression_str(rx_compression_id));
return(-1); // cannot handle it
}
if(rx_compression_id != N2N_COMPRESSION_ID_NONE) {
traceEvent(TRACE_DEBUG, "payload decompression %s: deflated %u bytes to %u bytes",
compression_str(rx_compression_id), eth_size, (int)deflated_len);
memcpy(eth_payload,deflation_buffer, deflated_len );
eth_size = deflated_len;
free(deflation_buffer);
}
is_multicast = (is_ip6_discovery(eth_payload, eth_size) || is_ethMulticast(eth_payload, eth_size));
if(eee->conf.drop_multicast && is_multicast) {
traceEvent(TRACE_INFO, "dropping RX multicast");
return(-1);
} else if((!eee->conf.allow_routing) && (!is_multicast)) {
/* Check if it is a routed packet */
if((ntohs(eh->type) == 0x0800) && (eth_size >= ETH_FRAMESIZE + IP4_MIN_SIZE)) {
uint32_t *dst = (uint32_t*)&eth_payload[ETH_FRAMESIZE + IP4_DSTOFFSET];
uint8_t *dst_mac = (uint8_t*)eth_payload;
/* Note: all elements of the_ip are in network order */
if(!memcmp(dst_mac, broadcast_mac, N2N_MAC_SIZE))
traceEvent(TRACE_DEBUG, "RX broadcast packet destined to [%s]",
intoa(ntohl(*dst), ip_buf, sizeof(ip_buf)));
else if((*dst != eee->device.ip_addr)) {
/* This is a packet that needs to be routed */
traceEvent(TRACE_INFO, "discarding routed packet destined to [%s]",
intoa(ntohl(*dst), ip_buf, sizeof(ip_buf)));
return(-1);
} else {
/* This packet is directed to us */
/* traceEvent(TRACE_INFO, "Sending non-routed packet"); */
}
}
}
if(eee->network_traffic_filter->filter_packet_from_peer(eee->network_traffic_filter, eee, orig_sender,
eth_payload, eth_size) == N2N_DROP) {
traceEvent(TRACE_DEBUG, "filtered packet of size %u", (unsigned int)eth_size);
return(0);
}
if(eee->cb.packet_from_peer) {
uint16_t tmp_eth_size = eth_size;
if(eee->cb.packet_from_peer(eee, orig_sender, eth_payload, &tmp_eth_size) == N2N_DROP) {
traceEvent(TRACE_DEBUG, "DROP packet of size %u", (unsigned int)eth_size);
return(0);
}
eth_size = tmp_eth_size;
}
/* Write ethernet packet to tap device. */
traceEvent(TRACE_DEBUG, "sending data of size %u to TAP", (unsigned int)eth_size);
data_sent_len = tuntap_write(&(eee->device), eth_payload, eth_size);
if(data_sent_len == eth_size) {
retval = 0;
}
} else {
traceEvent(TRACE_WARNING, "invalid transop ID: expected %s (%u), got %s (%u) from %s [%s]",
transop_str(eee->conf.transop_id), eee->conf.transop_id,
transop_str(rx_transop_id), rx_transop_id,
macaddr_str(mac_buf, pkt->srcMac),
sock_to_cstr(sockbuf, orig_sender));
}
}
return retval;
}
/* ************************************** */
#if 0
#ifndef WIN32
static char *get_ip_from_arp (dec_ip_str_t buf, const n2n_mac_t req_mac) {
FILE *fd;
dec_ip_str_t ip_str = {'\0'};
char dev_str[N2N_IFNAMSIZ] = {'\0'};
macstr_t mac_str = {'\0'};
n2n_mac_t mac = {'\0'};
strncpy(buf, "0.0.0.0", N2N_NETMASK_STR_SIZE - 1);
if(is_null_mac(req_mac)) {
traceEvent(TRACE_DEBUG, "MAC address is null.");
return buf;
}
if(!(fd = fopen("/proc/net/arp", "r"))) {
traceEvent(TRACE_WARNING, "could not open arp table: %d - %s", errno, strerror(errno));
return buf;
}
while(!feof(fd) && fgetc(fd) != '\n');
while(!feof(fd) && (fscanf(fd, " %15[0-9.] %*s %*s %17[A-Fa-f0-9:] %*s %15s", ip_str, mac_str, dev_str) == 3)) {
str2mac(mac, mac_str);
if(0 == memcmp(mac, req_mac, sizeof(n2n_mac_t))) {
strncpy(buf, ip_str, N2N_NETMASK_STR_SIZE - 1);
break;
}
}
fclose(fd);
return buf;
}
#endif
#endif
/** Read a datagram from the management UDP socket and take appropriate
* action. */
static void readFromMgmtSocket (n2n_edge_t *eee) {
char udp_buf[N2N_PKT_BUF_SIZE]; /* Compete UDP packet */
ssize_t recvlen;
/* ssize_t sendlen; */
struct sockaddr_in sender_sock;
socklen_t i;
size_t msg_len;
time_t now;
struct peer_info *peer, *tmpPeer;
macstr_t mac_buf;
char time_buf[10]; /* 9 digits + 1 terminating zero */
char uptime_buf[11]; /* 10 digits + 1 terminating zero */
/* dec_ip_bit_str_t ip_bit_str = {'\0'}; */
/* dec_ip_str_t ip_str = {'\0'}; */
in_addr_t net;
n2n_sock_str_t sockbuf;
uint32_t num_pending_peers = 0;
uint32_t num_known_peers = 0;
uint32_t num = 0;
selection_criterion_str_t sel_buf;
now = time(NULL);
i = sizeof(sender_sock);
recvlen = recvfrom(eee->udp_mgmt_sock, udp_buf, N2N_PKT_BUF_SIZE, 0/*flags*/,
(struct sockaddr *) &sender_sock, (socklen_t *) &i);
if(recvlen < 0) {
traceEvent(TRACE_WARNING, "mgmt recvfrom failed: %d - %s", errno, strerror(errno));
return; /* failed to receive data from UDP */
}
/* avoid parsing any uninitialized junk from the stack */
udp_buf[recvlen] = 0;
if((0 == memcmp(udp_buf, "help", 4)) || (0 == memcmp(udp_buf, "?", 1))) {
msg_len = 0;
msg_len += snprintf((char *) (udp_buf + msg_len), (N2N_PKT_BUF_SIZE - msg_len),
"Help for edge management console:\n"
"\tstop | Gracefully exit edge\n"
"\thelp | This help message\n"
"\t+verb | Increase verbosity of logging\n"
"\t-verb | Decrease verbosity of logging\n"
"\tr ... | start query with JSON reply\n"
"\tw ... | start update with JSON reply\n"
"\t<enter> | Display statistics\n\n");
sendto(eee->udp_mgmt_sock, udp_buf, msg_len, 0/*flags*/,
(struct sockaddr *) &sender_sock, sizeof(struct sockaddr_in));
return;
}
if(0 == memcmp(udp_buf, "stop", 4)) {
traceEvent(TRACE_NORMAL, "stop command received");
*eee->keep_running = 0;
return;
}
if(0 == memcmp(udp_buf, "+verb", 5)) {
msg_len = 0;
setTraceLevel(getTraceLevel() + 1);
traceEvent(TRACE_NORMAL, "+verb traceLevel=%u", (unsigned int) getTraceLevel());
msg_len += snprintf((char *) (udp_buf + msg_len), (N2N_PKT_BUF_SIZE - msg_len),
"> +OK traceLevel=%u\n", (unsigned int) getTraceLevel());
sendto(eee->udp_mgmt_sock, udp_buf, msg_len, 0/*flags*/,
(struct sockaddr *) &sender_sock, sizeof(struct sockaddr_in));
return;
}
if(0 == memcmp(udp_buf, "-verb", 5)) {
msg_len = 0;
if(getTraceLevel() > 0) {
setTraceLevel(getTraceLevel() - 1);
msg_len += snprintf((char *) (udp_buf + msg_len), (N2N_PKT_BUF_SIZE - msg_len),
"> -OK traceLevel=%u\n", getTraceLevel());
} else {
msg_len += snprintf((char *) (udp_buf + msg_len), (N2N_PKT_BUF_SIZE - msg_len),
"> -NOK traceLevel=%u\n", getTraceLevel());
}
traceEvent(TRACE_NORMAL, "-verb traceLevel=%u", (unsigned int) getTraceLevel());
sendto(eee->udp_mgmt_sock, udp_buf, msg_len, 0/*flags*/,
(struct sockaddr *) &sender_sock, sizeof(struct sockaddr_in));
return;
}
if((udp_buf[0] == 'r' || udp_buf[0] == 'w') && (udp_buf[1] == ' ')) {
/* this is a JSON request */
handleMgmtJson(eee, udp_buf, sender_sock);
return;
}
traceEvent(TRACE_DEBUG, "mgmt status requested");
msg_len = 0;
msg_len += snprintf((char *) (udp_buf + msg_len), (N2N_PKT_BUF_SIZE - msg_len),
"COMMUNITY '%s'\n\n",
(eee->conf.header_encryption == HEADER_ENCRYPTION_NONE) ? (char*)eee->conf.community_name : "-- header encrypted --");
msg_len += snprintf((char *) (udp_buf + msg_len), (N2N_PKT_BUF_SIZE - msg_len),
" ### | TAP | MAC | EDGE | HINT | LAST SEEN | UPTIME\n");
msg_len += snprintf((char *) (udp_buf + msg_len), (N2N_PKT_BUF_SIZE - msg_len),
"=============================================================================================================\n");
// dump nodes with forwarding through supernodes
msg_len += snprintf((char *) (udp_buf + msg_len), (N2N_PKT_BUF_SIZE - msg_len),
"SUPERNODE FORWARD\n");
num = 0;
HASH_ITER(hh, eee->pending_peers, peer, tmpPeer) {
++num_pending_peers;
net = htonl(peer->dev_addr.net_addr);
snprintf(time_buf, sizeof(time_buf), "%9u", (unsigned int)(now - peer->last_seen));
msg_len += snprintf((char *) (udp_buf + msg_len), (N2N_PKT_BUF_SIZE - msg_len),
"%4u | %-15s | %-17s | %-21s | %-15s | %9s |\n",
++num,
(peer->dev_addr.net_addr == 0) ? "" : inet_ntoa(*(struct in_addr *) &net),
(is_null_mac(peer->mac_addr)) ? "" : macaddr_str(mac_buf, peer->mac_addr),
sock_to_cstr(sockbuf, &(peer->sock)),
peer->dev_desc,
(peer->last_seen) ? time_buf : "");
sendto(eee->udp_mgmt_sock, udp_buf, msg_len, 0/*flags*/,
(struct sockaddr *) &sender_sock, sizeof(struct sockaddr_in));
msg_len = 0;
}
// dump peer-to-peer nodes
msg_len += snprintf((char *) (udp_buf + msg_len), (N2N_PKT_BUF_SIZE - msg_len),
"-------------------------------------------------------------------------------------------------------------\n");
msg_len += snprintf((char *) (udp_buf + msg_len), (N2N_PKT_BUF_SIZE - msg_len),
"PEER TO PEER\n");
num = 0;
HASH_ITER(hh, eee->known_peers, peer, tmpPeer) {
++num_known_peers;
net = htonl(peer->dev_addr.net_addr);
snprintf(time_buf, sizeof(time_buf), "%9u", (unsigned int)(now - peer->last_seen));
msg_len += snprintf((char *) (udp_buf + msg_len), (N2N_PKT_BUF_SIZE - msg_len),
"%4u | %-15s | %-17s | %-21s | %-15s | %9s |\n",
++num,
(peer->dev_addr.net_addr == 0) ? "" : inet_ntoa(*(struct in_addr *) &net),
(is_null_mac(peer->mac_addr)) ? "" : macaddr_str(mac_buf, peer->mac_addr),
sock_to_cstr(sockbuf, &(peer->sock)),
peer->dev_desc,
(peer->last_seen) ? time_buf : "");
sendto(eee->udp_mgmt_sock, udp_buf, msg_len, 0/*flags*/,
(struct sockaddr *) &sender_sock, sizeof(struct sockaddr_in));
msg_len = 0;
}
// dump supernodes
msg_len += snprintf((char *) (udp_buf + msg_len), (N2N_PKT_BUF_SIZE - msg_len),
"-------------------------------------------------------------------------------------------------------------\n");
msg_len += snprintf((char *) (udp_buf + msg_len), (N2N_PKT_BUF_SIZE - msg_len),
"SUPERNODES\n");
HASH_ITER(hh, eee->conf.supernodes, peer, tmpPeer) {
net = htonl(peer->dev_addr.net_addr);
snprintf(time_buf, sizeof(time_buf), "%9u", (unsigned int)(now - peer->last_seen));
snprintf(uptime_buf, sizeof(uptime_buf), "%10u", (unsigned int)(peer->uptime));
msg_len += snprintf((char *) (udp_buf + msg_len), (N2N_PKT_BUF_SIZE - msg_len),
"%-19s %1s%1s | %-17s | %-21s | %-15s | %9s | %10s\n",
peer->version,
(peer->purgeable == SN_UNPURGEABLE) ? "l" : "",
(peer == eee->curr_sn) ? (eee->sn_wait ? "." : "*" ) : "",
is_null_mac(peer->mac_addr) ? "" : macaddr_str(mac_buf, peer->mac_addr),
sock_to_cstr(sockbuf, &(peer->sock)),
sn_selection_criterion_str(eee, sel_buf, peer),
(peer->last_seen) ? time_buf : "",
(peer->uptime) ? uptime_buf : "");
sendto(eee->udp_mgmt_sock, udp_buf, msg_len, 0,
(struct sockaddr *) &sender_sock, sizeof(struct sockaddr_in));
msg_len = 0;
}
// further stats
msg_len += snprintf((char *) (udp_buf + msg_len), (N2N_PKT_BUF_SIZE - msg_len),
"=============================================================================================================\n");
msg_len += snprintf((char *) (udp_buf + msg_len), (N2N_PKT_BUF_SIZE - msg_len),
"uptime %lu | ",
time(NULL) - eee->start_time);
msg_len += snprintf((char *) (udp_buf + msg_len), (N2N_PKT_BUF_SIZE - msg_len),
"pend_peers %u | ",
num_pending_peers);
msg_len += snprintf((char *) (udp_buf + msg_len), (N2N_PKT_BUF_SIZE - msg_len),
"known_peers %u | ",
num_known_peers);
msg_len += snprintf((char *) (udp_buf + msg_len), (N2N_PKT_BUF_SIZE - msg_len),
"transop %u,%u\n",
(unsigned int) eee->transop.tx_cnt,
(unsigned int) eee->transop.rx_cnt);
msg_len += snprintf((char *) (udp_buf + msg_len), (N2N_PKT_BUF_SIZE - msg_len),
"super %u,%u | ",
(unsigned int) eee->stats.tx_sup,
(unsigned int) eee->stats.rx_sup);
msg_len += snprintf((char *) (udp_buf + msg_len), (N2N_PKT_BUF_SIZE - msg_len),
"p2p %u,%u\n",
(unsigned int) eee->stats.tx_p2p,
(unsigned int) eee->stats.rx_p2p);
msg_len += snprintf((char *) (udp_buf + msg_len), (N2N_PKT_BUF_SIZE - msg_len),
"last_super %ld sec ago | ",
(now - eee->last_sup));
msg_len += snprintf((char *) (udp_buf + msg_len), (N2N_PKT_BUF_SIZE - msg_len),
"last_p2p %ld sec ago\n",
(now - eee->last_p2p));
msg_len += snprintf((char *) (udp_buf + msg_len), (N2N_PKT_BUF_SIZE - msg_len),
"\nType \"help\" to see more commands.\n\n");
/* sendlen = */ sendto(eee->udp_mgmt_sock, udp_buf, msg_len, 0/*flags*/,
(struct sockaddr *) &sender_sock, sizeof(struct sockaddr_in));
}
/* ************************************** */
static int check_query_peer_info (n2n_edge_t *eee, time_t now, n2n_mac_t mac) {
struct peer_info *scan;
HASH_FIND_PEER(eee->pending_peers, mac, scan);
if(!scan) {
scan = calloc(1, sizeof(struct peer_info));
memcpy(scan->mac_addr, mac, N2N_MAC_SIZE);
scan->timeout = eee->conf.register_interval; /* TODO: should correspond to the peer supernode registration timeout */
scan->last_seen = now; /* Don't change this it marks the pending peer for removal. */
scan->last_valid_time_stamp = initial_time_stamp();
HASH_ADD_PEER(eee->pending_peers, scan);
}
if(now - scan->last_sent_query > eee->conf.register_interval) {
send_register(eee, &(eee->curr_sn->sock), mac, N2N_FORWARDED_REG_COOKIE);
send_query_peer(eee, scan->mac_addr);
scan->last_sent_query = now;
return(0);
}
return(1);
}
/* ************************************** */
/* @return 1 if destination is a peer, 0 if destination is supernode */
static int find_peer_destination (n2n_edge_t * eee,
n2n_mac_t mac_address,
n2n_sock_t * destination) {
struct peer_info *scan;
macstr_t mac_buf;
n2n_sock_str_t sockbuf;
int retval = 0;
time_t now = time(NULL);
if(is_multi_broadcast(mac_address)) {
traceEvent(TRACE_DEBUG, "multicast or broadcast destination peer, using supernode");
memcpy(destination, &(eee->curr_sn->sock), sizeof(struct sockaddr_in));
return(0);
}
traceEvent(TRACE_DEBUG, "searching destination socket for %s",
macaddr_str(mac_buf, mac_address));
HASH_FIND_PEER(eee->known_peers, mac_address, scan);
if(scan && (scan->last_seen > 0)) {
if((now - scan->last_p2p) >= (scan->timeout / 2)) {
/* Too much time passed since we saw the peer, need to register again
* since the peer address may have changed. */
traceEvent(TRACE_DEBUG, "refreshing idle known peer");
HASH_DEL(eee->known_peers, scan);
free(scan);
/* NOTE: registration will be performed upon the receival of the next response packet */
} else {
/* Valid known peer found */
memcpy(destination, &scan->sock, sizeof(n2n_sock_t));
retval = 1;
}
}
if(retval == 0) {
memcpy(destination, &(eee->curr_sn->sock), sizeof(struct sockaddr_in));
traceEvent(TRACE_DEBUG, "p2p peer %s not found, using supernode",
macaddr_str(mac_buf, mac_address));
check_query_peer_info(eee, now, mac_address);
}
traceEvent(TRACE_DEBUG, "found peer's socket %s [%s]",
macaddr_str(mac_buf, mac_address),
sock_to_cstr(sockbuf, destination));
return retval;
}
/* ***************************************************** */
/** Send an ecapsulated ethernet PACKET to a destination edge or broadcast MAC
* address. */
static int send_packet (n2n_edge_t * eee,
n2n_mac_t dstMac,
const uint8_t * pktbuf,
size_t pktlen) {
int is_p2p;
/*ssize_t s; */
n2n_sock_str_t sockbuf;
n2n_sock_t destination;
macstr_t mac_buf;
struct peer_info *peer, *tmp_peer;
/* hexdump(pktbuf, pktlen); */
is_p2p = find_peer_destination(eee, dstMac, &destination);
traceEvent(TRACE_INFO, "Tx PACKET of %u bytes to %s [%s]",
pktlen, macaddr_str(mac_buf, dstMac),
sock_to_cstr(sockbuf, &destination));
if(is_p2p)
++(eee->stats.tx_p2p);
else
++(eee->stats.tx_sup);
if(is_multi_broadcast(dstMac)) {
++(eee->stats.tx_sup_broadcast);
// if no supernode around, foward the broadcast to all known peers
if(eee->sn_wait) {
HASH_ITER(hh, eee->known_peers, peer, tmp_peer)
/* s = */ sendto_sock(eee, pktbuf, pktlen, &peer->sock);
return 0;
}
// fall through otherwise
}
/* s = */ sendto_sock(eee, pktbuf, pktlen, &destination);
return 0;
}
/* ************************************** */
/** A layer-2 packet was received at the tunnel and needs to be sent via UDP. */
void edge_send_packet2net (n2n_edge_t * eee,
uint8_t *tap_pkt, size_t len) {
ipstr_t ip_buf;
n2n_mac_t destMac;
n2n_common_t cmn;
n2n_PACKET_t pkt;
uint8_t pktbuf[N2N_PKT_BUF_SIZE];
size_t idx = 0;
n2n_transform_t tx_transop_idx = eee->transop.transform_id;
ether_hdr_t eh;
/* tap_pkt is not aligned so we have to copy to aligned memory */
memcpy(&eh, tap_pkt, sizeof(ether_hdr_t));
/* Discard IP packets that are not originated by this hosts */
if(!(eee->conf.allow_routing)) {
if(ntohs(eh.type) == 0x0800) {
/* This is an IP packet from the local source address - not forwarded. */
uint32_t *src = (uint32_t*)&tap_pkt[ETH_FRAMESIZE + IP4_SRCOFFSET];
/* Note: all elements of the_ip are in network order */
if(*src != eee->device.ip_addr) {
/* This is a packet that needs to be routed */
traceEvent(TRACE_INFO, "discarding routed packet destined to [%s]",
intoa(ntohl(*src), ip_buf, sizeof(ip_buf)));
return;
} else {
/* This packet is originated by us */
/* traceEvent(TRACE_INFO, "Sending non-routed packet"); */
}
}
}
/* Optionally compress then apply transforms, eg encryption. */
/* Once processed, send to destination in PACKET */
memcpy(destMac, tap_pkt, N2N_MAC_SIZE); /* dest MAC is first in ethernet header */
memset(&cmn, 0, sizeof(cmn));
cmn.ttl = N2N_DEFAULT_TTL;
cmn.pc = n2n_packet;
cmn.flags = 0; /* no options, not from supernode, no socket */
memcpy(cmn.community, eee->conf.community_name, N2N_COMMUNITY_SIZE);
memset(&pkt, 0, sizeof(pkt));
memcpy(pkt.srcMac, eee->device.mac_addr, N2N_MAC_SIZE);
memcpy(pkt.dstMac, destMac, N2N_MAC_SIZE);
pkt.transform = tx_transop_idx;
// compression needs to be tried before encode_PACKET is called for compression indication gets encoded there
pkt.compression = N2N_COMPRESSION_ID_NONE;
if(eee->conf.compression) {
uint8_t * compression_buffer = NULL;
int32_t compression_len;
switch(eee->conf.compression) {
case N2N_COMPRESSION_ID_LZO:
compression_buffer = malloc(len + len / 16 + 64 + 3);
if(lzo1x_1_compress(tap_pkt, len, compression_buffer, (lzo_uint*)&compression_len, wrkmem) == LZO_E_OK) {
if(compression_len < len) {
pkt.compression = N2N_COMPRESSION_ID_LZO;
}
}
break;
#ifdef N2N_HAVE_ZSTD
case N2N_COMPRESSION_ID_ZSTD:
compression_len = N2N_PKT_BUF_SIZE + 128;
compression_buffer = malloc(compression_len); // leaves enough room, for exact size call compression_len = ZSTD_compressBound (len); (slower)
compression_len = (int32_t)ZSTD_compress(compression_buffer, compression_len, tap_pkt, len, ZSTD_COMPRESSION_LEVEL);
if(!ZSTD_isError(compression_len)) {
if(compression_len < len) {
pkt.compression = N2N_COMPRESSION_ID_ZSTD;
}
} else {
traceEvent(TRACE_ERROR, "payload compression failed with zstd error '%s'.",
ZSTD_getErrorName(compression_len));
free(compression_buffer);
// continue with unset without pkt.compression --> will send uncompressed
}
break;
#endif
default:
break;
}
if(pkt.compression != N2N_COMPRESSION_ID_NONE) {
traceEvent(TRACE_DEBUG, "payload compression [%s]: compressed %u bytes to %u bytes\n",
compression_str(pkt.compression), len, compression_len);
memcpy(tap_pkt, compression_buffer, compression_len);
len = compression_len;
}
if(compression_buffer) {
free(compression_buffer);
}
}
idx = 0;
encode_PACKET(pktbuf, &idx, &cmn, &pkt);
uint16_t headerIdx = idx;
idx += eee->transop.fwd(&eee->transop,
pktbuf + idx, N2N_PKT_BUF_SIZE - idx,
tap_pkt, len, pkt.dstMac);
traceEvent(TRACE_DEBUG, "encode PACKET of %u bytes, %u bytes data, %u bytes overhead, transform %u",
(u_int)idx, (u_int)len, (u_int)(idx - len), tx_transop_idx);
if(eee->conf.header_encryption == HEADER_ENCRYPTION_ENABLED)
// in case of user-password auth, also encrypt the iv of payload assuming ChaCha20 and SPECK having the same iv size
packet_header_encrypt(pktbuf, headerIdx + (NULL != eee->conf.shared_secret) * min(idx - headerIdx, N2N_SPECK_IVEC_SIZE), idx,
eee->conf.header_encryption_ctx_dynamic, eee->conf.header_iv_ctx_dynamic,
time_stamp());
#ifdef MTU_ASSERT_VALUE
{
const u_int eth_udp_overhead = ETH_FRAMESIZE + IP4_MIN_SIZE + UDP_SIZE;
// MTU assertion which avoids fragmentation by N2N
assert(idx + eth_udp_overhead <= MTU_ASSERT_VALUE);
}
#endif
eee->transop.tx_cnt++; /* stats */
send_packet(eee, destMac, pktbuf, idx); /* to peer or supernode */
}
/* ************************************** */
/** Read a single packet from the TAP interface, process it and write out the
* corresponding packet to the cooked socket.
*/
void edge_read_from_tap (n2n_edge_t * eee) {
/* tun -> remote */
uint8_t eth_pkt[N2N_PKT_BUF_SIZE];
macstr_t mac_buf;
ssize_t len;
len = tuntap_read( &(eee->device), eth_pkt, N2N_PKT_BUF_SIZE );
if((len <= 0) || (len > N2N_PKT_BUF_SIZE)) {
traceEvent(TRACE_WARNING, "read()=%d [%d/%s]",
(signed int)len, errno, strerror(errno));
traceEvent(TRACE_WARNING, "TAP I/O operation aborted, restart later.");
sleep(3);
tuntap_close(&(eee->device));
tuntap_open(&(eee->device), eee->tuntap_priv_conf.tuntap_dev_name, eee->tuntap_priv_conf.ip_mode, eee->tuntap_priv_conf.ip_addr,
eee->tuntap_priv_conf.netmask, eee->tuntap_priv_conf.device_mac, eee->tuntap_priv_conf.mtu
#ifdef WIN32
,eee->tuntap_priv_conf.metric
#endif
);
} else {
const uint8_t * mac = eth_pkt;
traceEvent(TRACE_DEBUG, "Rx TAP packet (%4d) for %s",
(signed int)len, macaddr_str(mac_buf, mac));
if(eee->conf.drop_multicast &&
(is_ip6_discovery(eth_pkt, len) ||
is_ethMulticast(eth_pkt, len))) {
traceEvent(TRACE_INFO, "dropping Tx multicast");
} else {
if(!eee->last_sup) {
// drop packets before first registration with supernode
traceEvent(TRACE_DEBUG, "DROP packet before first registration with supernode");
return;
}
if(eee->network_traffic_filter) {
if(eee->network_traffic_filter->filter_packet_from_tap(eee->network_traffic_filter, eee, eth_pkt,
len) == N2N_DROP) {
traceEvent(TRACE_DEBUG, "filtered packet of size %u", (unsigned int)len);
return;
}
}
if(eee->cb.packet_from_tap) {
uint16_t tmp_len = len;
if(eee->cb.packet_from_tap(eee, eth_pkt, &tmp_len) == N2N_DROP) {
traceEvent(TRACE_DEBUG, "DROP packet of size %u", (unsigned int)len);
return;
}
len = tmp_len;
}
edge_send_packet2net(eee, eth_pkt, len);
}
}
}
/* ************************************** */
/** handle a datagram from the main UDP socket to the internet. */
void process_udp (n2n_edge_t *eee, const struct sockaddr_in *sender_sock, const SOCKET in_sock,
uint8_t *udp_buf, size_t udp_size, time_t now) {
n2n_common_t cmn; /* common fields in the packet header */
n2n_sock_str_t sockbuf1;
n2n_sock_str_t sockbuf2; /* don't clobber sockbuf1 if writing two addresses to trace */
macstr_t mac_buf1;
macstr_t mac_buf2;
uint8_t hash_buf[16];
size_t rem;
size_t idx;
size_t msg_type;
uint8_t from_supernode;
uint8_t via_multicast;
peer_info_t *sn = NULL;
n2n_sock_t sender;
n2n_sock_t * orig_sender = NULL;
uint32_t header_enc = 0;
uint64_t stamp = 0;
int skip_add = 0;
/* REVISIT: when UDP/IPv6 is supported we will need a flag to indicate which
* IP transport version the packet arrived on. May need to UDP sockets. */
memset(&sender, 0, sizeof(n2n_sock_t));
if(eee->conf.connect_tcp)
// TCP expects that we know our comm partner and does not deliver the sender
memcpy(&sender, &(eee->curr_sn->sock), sizeof(struct sockaddr_in));
else {
sender.family = AF_INET; /* UDP socket was opened PF_INET v4 */
sender.port = ntohs(sender_sock->sin_port);
memcpy(&(sender.addr.v4), &(sender_sock->sin_addr.s_addr), IPV4_SIZE);
}
/* The packet may not have an orig_sender socket spec. So default to last
* hop as sender. */
orig_sender = &sender;
#ifdef SKIP_MULTICAST_PEERS_DISCOVERY
via_multicast = 0;
#else
via_multicast = (in_sock == eee->udp_multicast_sock);
#endif
traceEvent(TRACE_DEBUG, "Rx N2N_UDP of size %d from [%s]",
(signed int)udp_size, sock_to_cstr(sockbuf1, &sender));
if(eee->conf.header_encryption == HEADER_ENCRYPTION_ENABLED) {
// match with static (1) or dynamic (2) ctx?
// check dynamic first as it is identical to static in normal header encryption mode
if(packet_header_decrypt(udp_buf, udp_size,
(char *)eee->conf.community_name,
eee->conf.header_encryption_ctx_dynamic, eee->conf.header_iv_ctx_dynamic,
&stamp)) {
header_enc = 2; /* not accurate with normal header encryption but does not matter */
}
if(!header_enc) {
// check static now (very likely to be REGISTER_SUPER_ACK, REGISTER_SUPER_NAK or invalid)
if(eee->conf.shared_secret) {
// hash the still encrypted packet to eventually be able to check it later (required for REGISTER_SUPER_ACK with user/pw auth)
pearson_hash_128(hash_buf, udp_buf, max(0, (int)udp_size - (int)N2N_REG_SUP_HASH_CHECK_LEN));
}
header_enc = packet_header_decrypt(udp_buf, max(0, (int)udp_size - (int)N2N_REG_SUP_HASH_CHECK_LEN),
(char *)eee->conf.community_name,
eee->conf.header_encryption_ctx_static, eee->conf.header_iv_ctx_static,
&stamp);
}
if(!header_enc) {
traceEvent(TRACE_DEBUG, "failed to decrypt header");
return;
}
// time stamp verification follows in the packet specific section as it requires to determine the
// sender from the hash list by its MAC, or the packet might be from the supernode, this all depends
// on packet type, path taken (via supernode) and packet structure (MAC is not always in the same place)
}
rem = udp_size; /* Counts down bytes of packet to protect against buffer overruns. */
idx = 0; /* marches through packet header as parts are decoded. */
if(decode_common(&cmn, udp_buf, &rem, &idx) < 0) {
if(via_multicast) {
// from some other edge on local network, possibly header encrypted
traceEvent(TRACE_DEBUG, "dropped packet arriving via multicast due to error while decoding N2N_UDP");
} else {
traceEvent(TRACE_INFO, "failed to decode common section in N2N_UDP");
}
return; /* failed to decode packet */
}
msg_type = cmn.pc; /* packet code */
// special case for user/pw auth
// community's auth scheme and message type need to match the used key (dynamic)
if((eee->conf.shared_secret)
&& (msg_type != MSG_TYPE_REGISTER_SUPER_ACK)
&& (msg_type != MSG_TYPE_REGISTER_SUPER_NAK)) {
if(header_enc != 2) {
traceEvent(TRACE_INFO, "dropped packet encrypted with static key where dynamic key expected");
return;
}
}
// check if packet is from supernode and find the corresponding supernode in list
from_supernode = cmn.flags & N2N_FLAGS_FROM_SUPERNODE;
if(from_supernode) {
skip_add = SN_ADD_SKIP;
sn = add_sn_to_list_by_mac_or_sock(&(eee->conf.supernodes), &sender, null_mac, &skip_add);
if(!sn) {
traceEvent(TRACE_DEBUG, "dropped incoming data from unknown supernode");
return;
}
}
if(0 == memcmp(cmn.community, eee->conf.community_name, N2N_COMMUNITY_SIZE)) {
switch(msg_type) {
case MSG_TYPE_PACKET: {
/* process PACKET - most frequent so first in list. */
n2n_PACKET_t pkt;
decode_PACKET(&pkt, &cmn, udp_buf, &rem, &idx);
if(eee->conf.header_encryption == HEADER_ENCRYPTION_ENABLED) {
if(!find_peer_time_stamp_and_verify(eee, sn, pkt.srcMac, stamp, TIME_STAMP_ALLOW_JITTER)) {
traceEvent(TRACE_DEBUG, "dropped PACKET due to time stamp error");
return;
}
}
if(!eee->last_sup) {
// drop packets received before first registration with supernode
traceEvent(TRACE_DEBUG, "dropped PACKET recevied before first registration with supernode");
return;
}
if(!from_supernode) {
/* This is a P2P packet from the peer. We purge a pending
* registration towards the possibly nat-ted peer address as we now have
* a valid channel. We still use check_peer_registration_needed in
* handle_PACKET to double check this.
*/
traceEvent(TRACE_DEBUG, "[p2p] from %s",
macaddr_str(mac_buf1, pkt.srcMac));
find_and_remove_peer(&eee->pending_peers, pkt.srcMac);
} else {
/* [PsP] : edge Peer->Supernode->edge Peer */
if(is_valid_peer_sock(&pkt.sock))
orig_sender = &(pkt.sock);
traceEvent(TRACE_DEBUG, "[pSp] from %s via [%s]",
macaddr_str(mac_buf1, pkt.srcMac),
sock_to_cstr(sockbuf1, &sender));
}
/* Update the sender in peer table entry */
check_peer_registration_needed(eee, from_supernode, via_multicast,
pkt.srcMac,
// REVISIT: also consider PORT_REG_COOKIEs when implemented
from_supernode ? N2N_FORWARDED_REG_COOKIE : N2N_REGULAR_REG_COOKIE,
NULL, NULL, orig_sender);
handle_PACKET(eee, from_supernode, &pkt, orig_sender, udp_buf + idx, udp_size - idx);
break;
}
case MSG_TYPE_REGISTER: {
/* Another edge is registering with us */
n2n_REGISTER_t reg;
decode_REGISTER(&reg, &cmn, udp_buf, &rem, &idx);
via_multicast &= is_null_mac(reg.dstMac);
if(eee->conf.header_encryption == HEADER_ENCRYPTION_ENABLED) {
if(!find_peer_time_stamp_and_verify(eee, sn, reg.srcMac, stamp,
via_multicast ? TIME_STAMP_ALLOW_JITTER : TIME_STAMP_NO_JITTER)) {
traceEvent(TRACE_DEBUG, "dropped REGISTER due to time stamp error");
return;
}
}
if(is_valid_peer_sock(&reg.sock))
orig_sender = &(reg.sock);
if(via_multicast && !memcmp(reg.srcMac, eee->device.mac_addr, N2N_MAC_SIZE)) {
traceEvent(TRACE_DEBUG, "skipping REGISTER from self");
break;
}
if(!via_multicast && memcmp(reg.dstMac, eee->device.mac_addr, N2N_MAC_SIZE)) {
traceEvent(TRACE_DEBUG, "skipping REGISTER for other peer");
break;
}
if(!from_supernode) {
/* This is a P2P registration from the peer. We purge a pending
* registration towards the possibly nat-ted peer address as we now have
* a valid channel. We still use check_peer_registration_needed below
* to double check this.
*/
traceEvent(TRACE_INFO, "[p2p] Rx REGISTER from %s [%s]%s",
macaddr_str(mac_buf1, reg.srcMac),
sock_to_cstr(sockbuf1, &sender),
(reg.cookie & N2N_LOCAL_REG_COOKIE) ? " (local)" : "");
find_and_remove_peer(&eee->pending_peers, reg.srcMac);
/* NOTE: only ACK to peers */
send_register_ack(eee, orig_sender, &reg);
} else {
traceEvent(TRACE_INFO, "[pSp] Rx REGISTER from %s [%s] to %s via [%s]",
macaddr_str(mac_buf1, reg.srcMac), sock_to_cstr(sockbuf2, orig_sender),
macaddr_str(mac_buf2, reg.dstMac), sock_to_cstr(sockbuf1, &sender));
}
check_peer_registration_needed(eee, from_supernode, via_multicast,
reg.srcMac, reg.cookie, &reg.dev_addr, (const n2n_desc_t*)&reg.dev_desc, orig_sender);
break;
}
case MSG_TYPE_REGISTER_ACK: {
/* Peer edge is acknowledging our register request */
n2n_REGISTER_ACK_t ra;
decode_REGISTER_ACK(&ra, &cmn, udp_buf, &rem, &idx);
if(eee->conf.header_encryption == HEADER_ENCRYPTION_ENABLED) {
if(!find_peer_time_stamp_and_verify(eee, sn, ra.srcMac, stamp, TIME_STAMP_NO_JITTER)) {
traceEvent(TRACE_DEBUG, "dropped REGISTER_ACK due to time stamp error");
return;
}
}
if(is_valid_peer_sock(&ra.sock))
orig_sender = &(ra.sock);
traceEvent(TRACE_INFO, "Rx REGISTER_ACK from %s [%s] to %s via [%s]%s",
macaddr_str(mac_buf1, ra.srcMac),
sock_to_cstr(sockbuf2, orig_sender),
macaddr_str(mac_buf2, ra.dstMac),
sock_to_cstr(sockbuf1, &sender),
(ra.cookie & N2N_LOCAL_REG_COOKIE) ? " (local)" : "");
peer_set_p2p_confirmed(eee, ra.srcMac,
ra.cookie,
&sender, now);
break;
}
case MSG_TYPE_REGISTER_SUPER_ACK: {
in_addr_t net;
char * ip_str = NULL;
n2n_REGISTER_SUPER_ACK_t ra;
uint8_t tmpbuf[REG_SUPER_ACK_PAYLOAD_SPACE];
char ip_tmp[N2N_EDGE_SN_HOST_SIZE];
n2n_REGISTER_SUPER_ACK_payload_t *payload;
int i;
int skip_add;
if(!(eee->sn_wait)) {
traceEvent(TRACE_DEBUG, "Rx REGISTER_SUPER_ACK with no outstanding REGISTER_SUPER");
return;
}
memset(&ra, 0, sizeof(n2n_REGISTER_SUPER_ACK_t));
decode_REGISTER_SUPER_ACK(&ra, &cmn, udp_buf, &rem, &idx, tmpbuf);
if(eee->conf.header_encryption == HEADER_ENCRYPTION_ENABLED) {
if(!find_peer_time_stamp_and_verify(eee, sn, ra.srcMac, stamp, TIME_STAMP_NO_JITTER)) {
traceEvent(TRACE_DEBUG, "dropped REGISTER_SUPER_ACK due to time stamp error");
return;
}
}
// hash check (user/pw auth only)
if(eee->conf.shared_secret) {
speck_128_encrypt(hash_buf, (speck_context_t*)eee->conf.shared_secret_ctx);
if(memcmp(hash_buf, udp_buf + udp_size - N2N_REG_SUP_HASH_CHECK_LEN /* length is has already been checked */, N2N_REG_SUP_HASH_CHECK_LEN)) {
traceEvent(TRACE_INFO, "Rx REGISTER_SUPER_ACK with wrong hash");
return;
}
}
if(ra.cookie != eee->curr_sn->last_cookie) {
traceEvent(TRACE_INFO, "Rx REGISTER_SUPER_ACK with wrong or old cookie");
return;
}
if(handle_remote_auth(eee, sn, &(ra.auth))) {
traceEvent(TRACE_INFO, "Rx REGISTER_SUPER_ACK with wrong or old response to challenge");
if(eee->conf.shared_secret) {
traceEvent(TRACE_NORMAL, "Rx REGISTER_SUPER_ACK with wrong or old response to challenge, maybe indicating wrong federation public key (-P)");
}
return;
}
if(is_valid_peer_sock(&ra.sock))
orig_sender = &(ra.sock);
traceEvent(TRACE_INFO, "Rx REGISTER_SUPER_ACK from %s [%s] (external %s) with %u attempts left",
macaddr_str(mac_buf1, ra.srcMac),
sock_to_cstr(sockbuf1, &sender),
sock_to_cstr(sockbuf2, orig_sender),
(unsigned int)eee->sup_attempts);
if(is_null_mac(eee->curr_sn->mac_addr)) {
HASH_DEL(eee->conf.supernodes, eee->curr_sn);
memcpy(&eee->curr_sn->mac_addr, ra.srcMac, N2N_MAC_SIZE);
HASH_ADD_PEER(eee->conf.supernodes, eee->curr_sn);
}
payload = (n2n_REGISTER_SUPER_ACK_payload_t*)tmpbuf;
// from here on, 'sn' gets used differently
for(i = 0; i < ra.num_sn; i++) {
skip_add = SN_ADD;
sn = add_sn_to_list_by_mac_or_sock(&(eee->conf.supernodes), &(payload->sock), payload->mac, &skip_add);
if(skip_add == SN_ADD_ADDED) {
sn->ip_addr = calloc(1, N2N_EDGE_SN_HOST_SIZE);
if(sn->ip_addr != NULL) {
inet_ntop(payload->sock.family,
(payload->sock.family == AF_INET) ? (void*)&(payload->sock.addr.v4) : (void*)&(payload->sock.addr.v6),
sn->ip_addr, N2N_EDGE_SN_HOST_SIZE - 1);
sprintf(ip_tmp, "%s:%u", (char*)sn->ip_addr, (uint16_t)(payload->sock.port));
memcpy(sn->ip_addr, ip_tmp, sizeof(ip_tmp));
}
sn_selection_criterion_default(&(sn->selection_criterion));
sn->last_seen = 0; /* as opposed to payload handling in supernode */
traceEvent(TRACE_NORMAL, "supernode '%s' added to the list of supernodes.", sn->ip_addr);
}
// shift to next payload entry
payload++;
}
if(eee->conf.tuntap_ip_mode == TUNTAP_IP_MODE_SN_ASSIGN) {
if((ra.dev_addr.net_addr != 0) && (ra.dev_addr.net_bitlen != 0)) {
net = htonl(ra.dev_addr.net_addr);
if((ip_str = inet_ntoa(*(struct in_addr *) &net)) != NULL) {
strncpy(eee->tuntap_priv_conf.ip_addr, ip_str, N2N_NETMASK_STR_SIZE);
eee->tuntap_priv_conf.ip_addr[N2N_NETMASK_STR_SIZE - 1] = '\0';
}
net = htonl(bitlen2mask(ra.dev_addr.net_bitlen));
if((ip_str = inet_ntoa(*(struct in_addr *) &net)) != NULL) {
strncpy(eee->tuntap_priv_conf.netmask, ip_str, N2N_NETMASK_STR_SIZE);
eee->tuntap_priv_conf.netmask[N2N_NETMASK_STR_SIZE - 1] = '\0';
}
}
}
eee->sn_wait = 0;
reset_sup_attempts(eee); /* refresh because we got a response */
// update last_sup only on 'real' REGISTER_SUPER_ACKs, not on bootstrap ones (own MAC address
// still null_mac) this allows reliable in/out PACKET drop if not really registered with a supernode yet
if(!is_null_mac(eee->device.mac_addr)) {
if(!eee->last_sup) {
// indicates first successful connection between the edge and a supernode
traceEvent(TRACE_NORMAL, "[OK] edge <<< ================ >>> supernode");
// send gratuitous ARP only upon first registration with supernode
send_grat_arps(eee);
}
eee->last_sup = now;
}
// NOTE: the register_interval should be chosen by the edge node based on its NAT configuration.
// eee->conf.register_interval = ra.lifetime;
if(eee->cb.sn_registration_updated && !is_null_mac(eee->device.mac_addr))
eee->cb.sn_registration_updated(eee, now, &sender);
break;
}
case MSG_TYPE_REGISTER_SUPER_NAK: {
n2n_REGISTER_SUPER_NAK_t nak;
if(!(eee->sn_wait)) {
traceEvent(TRACE_DEBUG, "Rx REGISTER_SUPER_NAK with no outstanding REGISTER_SUPER");
return;
}
memset(&nak, 0, sizeof(n2n_REGISTER_SUPER_NAK_t));
decode_REGISTER_SUPER_NAK(&nak, &cmn, udp_buf, &rem, &idx);
if(eee->conf.header_encryption == HEADER_ENCRYPTION_ENABLED) {
if(!find_peer_time_stamp_and_verify(eee, sn, nak.srcMac, stamp, TIME_STAMP_NO_JITTER)) {
traceEvent(TRACE_DEBUG, "dropped REGISTER_SUPER_NAK due to time stamp error");
return;
}
}
if(nak.cookie != eee->curr_sn->last_cookie) {
traceEvent(TRACE_DEBUG, "Rx REGISTER_SUPER_NAK with wrong or old cookie");
return;
}
// REVISIT: authenticate the NAK packet really originating from the supernode along the auth token.
// this must follow a different scheme because it needs to prove authenticity although the
// edge-provided credentials are wrong
traceEvent(TRACE_INFO, "Rx REGISTER_SUPER_NAK");
if((memcmp(nak.srcMac, eee->device.mac_addr, sizeof(n2n_mac_t))) == 0) {
if(eee->conf.shared_secret) {
traceEvent(TRACE_ERROR, "authentication error, username or password not recognized by supernode");
} else {
traceEvent(TRACE_ERROR, "authentication error, MAC or IP address already in use or not released yet by supernode");
}
// REVISIT: the following portion is too harsh, repeated error warning should be sufficient until it eventually is resolved,
// preventing de-auth attacks
/* exit(1); this is too harsh, repeated error warning should be sufficient until it eventually is resolved, preventing de-auth attacks
} else {
HASH_FIND_PEER(eee->known_peers, nak.srcMac, peer);
if(peer != NULL) {
HASH_DEL(eee->known_peers, peer);
}
HASH_FIND_PEER(eee->pending_peers, nak.srcMac, scan);
if(scan != NULL) {
HASH_DEL(eee->pending_peers, scan);
} */
}
break;
}
case MSG_TYPE_PEER_INFO: {
n2n_PEER_INFO_t pi;
struct peer_info * scan;
int skip_add;
decode_PEER_INFO(&pi, &cmn, udp_buf, &rem, &idx);
if(eee->conf.header_encryption == HEADER_ENCRYPTION_ENABLED) {
if(!find_peer_time_stamp_and_verify(eee, sn, null_mac, stamp, TIME_STAMP_ALLOW_JITTER)) {
traceEvent(TRACE_DEBUG, "dropped PEER_INFO due to time stamp error");
return;
}
}
if((cmn.flags & N2N_FLAGS_SOCKET) && !is_valid_peer_sock(&pi.sock)) {
traceEvent(TRACE_DEBUG, "skip invalid PEER_INFO from %s [%s]",
macaddr_str(mac_buf1, pi.mac),
sock_to_cstr(sockbuf1, &pi.sock));
break;
}
if(is_null_mac(pi.mac)) {
// PONG - answer to PING (QUERY_PEER_INFO with null mac)
skip_add = SN_ADD_SKIP;
scan = add_sn_to_list_by_mac_or_sock(&(eee->conf.supernodes), &sender, pi.srcMac, &skip_add);
if(scan != NULL) {
eee->sn_pong = 1;
scan->last_seen = now;
scan->uptime = pi.uptime;
memcpy(scan->version, pi.version, sizeof(n2n_version_t));
/* The data type depends on the actual selection strategy that has been chosen. */
SN_SELECTION_CRITERION_DATA_TYPE sn_sel_tmp = pi.load;
sn_selection_criterion_calculate(eee, scan, &sn_sel_tmp);
traceEvent(TRACE_INFO, "Rx PONG from supernode %s",
macaddr_str(mac_buf1, pi.srcMac));
break;
}
} else {
// regular PEER_INFO
HASH_FIND_PEER(eee->pending_peers, pi.mac, scan);
if(!scan)
// just in case the remote edge has been upgraded by the REG/ACK mechanism in the meantime
HASH_FIND_PEER(eee->known_peers, pi.mac, scan);
if(scan) {
scan->sock = pi.sock;
traceEvent(TRACE_INFO, "Rx PEER_INFO %s can be found at [%s]",
macaddr_str(mac_buf1, pi.mac),
sock_to_cstr(sockbuf1, &pi.sock));
if(cmn.flags & N2N_FLAGS_SOCKET) {
scan->preferred_sock = pi.preferred_sock;
send_register(eee, &scan->preferred_sock, scan->mac_addr, N2N_LOCAL_REG_COOKIE);
traceEvent(TRACE_INFO, "%s has preferred local socket at [%s]",
macaddr_str(mac_buf1, pi.mac),
sock_to_cstr(sockbuf1, &pi.preferred_sock));
}
send_register(eee, &scan->sock, scan->mac_addr, N2N_REGULAR_REG_COOKIE);
} else {
traceEvent(TRACE_INFO, "Rx PEER_INFO unknown peer %s",
macaddr_str(mac_buf1, pi.mac));
}
}
break;
}
case MSG_TYPE_RE_REGISTER_SUPER: {
if(eee->conf.header_encryption == HEADER_ENCRYPTION_ENABLED) {
if(!find_peer_time_stamp_and_verify(eee, sn, null_mac, stamp, TIME_STAMP_NO_JITTER)) {
traceEvent(TRACE_DEBUG, "dropped RE_REGISTER due to time stamp error");
return;
}
}
// only accept in user/pw mode for immediate re-registration because the new
// key is required for continous traffic flow, in other modes edge will realize
// changes with regular recurring REGISTER_SUPER
if(!eee->conf.shared_secret) {
traceEvent(TRACE_DEBUG, "dropped RE_REGISTER_SUPER as not in user/pw auth mode");
return;
}
traceEvent(TRACE_INFO, "Rx RE_REGISTER_SUPER");
eee->sn_wait = 2; /* immediately */
break;
}
default:
/* Not a known message type */
traceEvent(TRACE_INFO, "unable to handle packet type %d: ignored", (signed int)msg_type);
return;
} /* switch(msg_type) */
} else if(from_supernode) /* if(community match) */
traceEvent(TRACE_INFO, "received packet with unknown community");
else
traceEvent(TRACE_INFO, "ignoring packet with unknown community");
}
/* ************************************** */
int fetch_and_eventually_process_data (n2n_edge_t *eee, SOCKET sock,
uint8_t *pktbuf, uint16_t *expected, uint16_t *position,
time_t now) {
ssize_t bread = 0;
if((!eee->conf.connect_tcp)
#ifndef SKIP_MULTICAST_PEERS_DISCOVERY
|| (sock == eee->udp_multicast_sock)
#endif
) {
// udp
struct sockaddr_in sender_sock;
socklen_t i;
i = sizeof(sender_sock);
bread = recvfrom(sock, pktbuf, N2N_PKT_BUF_SIZE, 0 /*flags*/,
(struct sockaddr *)&sender_sock, (socklen_t *)&i);
if((bread < 0)
#ifdef WIN32
&& (WSAGetLastError() != WSAECONNRESET)
#endif
) {
/* For UDP bread of zero just means no data (unlike TCP). */
/* The fd is no good now. Maybe we lost our interface. */
traceEvent(TRACE_ERROR, "recvfrom() failed %d errno %d (%s)", bread, errno, strerror(errno));
#ifdef WIN32
traceEvent(TRACE_ERROR, "WSAGetLastError(): %u", WSAGetLastError());
#endif
return -1;
}
// we have a datagram to process...
if(bread > 0) {
// ...and the datagram has data (not just a header)
process_udp(eee, &sender_sock, sock, pktbuf, bread, now);
}
} else {
// tcp
struct sockaddr_in sender_sock;
socklen_t i;
i = sizeof(sender_sock);
bread = recvfrom(sock,
pktbuf + *position, *expected - *position, 0 /*flags*/,
(struct sockaddr *)&sender_sock, (socklen_t *)&i);
if((bread <= 0) && (errno)) {
traceEvent(TRACE_ERROR, "recvfrom() failed %d errno %d (%s)", bread, errno, strerror(errno));
#ifdef WIN32
traceEvent(TRACE_ERROR, "WSAGetLastError(): %u", WSAGetLastError());
#endif
supernode_disconnect(eee);
eee->sn_wait = 1;
traceEvent(TRACE_DEBUG, "disconnected supernode due to connection error");
goto tcp_done;
}
*position = *position + bread;
if(*position == *expected) {
if(*position == sizeof(uint16_t)) {
// the prepended length has been read, preparing for the packet
*expected = *expected + be16toh(*(uint16_t*)(pktbuf));
if(*expected > N2N_PKT_BUF_SIZE) {
supernode_disconnect(eee);
eee->sn_wait = 1;
traceEvent(TRACE_DEBUG, "disconnected supernode due to too many bytes expected");
goto tcp_done;
}
} else {
// full packet read, handle it
process_udp(eee, (struct sockaddr_in*)&sender_sock, sock,
pktbuf + sizeof(uint16_t), *position - sizeof(uint16_t), now);
// reset, await new prepended length
*expected = sizeof(uint16_t);
*position = 0;
}
}
}
tcp_done:
;
return 0;
}
void print_edge_stats (const n2n_edge_t *eee) {
const struct n2n_edge_stats *s = &eee->stats;
traceEvent(TRACE_NORMAL, "**********************************");
traceEvent(TRACE_NORMAL, "Packet stats:");
traceEvent(TRACE_NORMAL, " TX P2P: %u pkts", s->tx_p2p);
traceEvent(TRACE_NORMAL, " RX P2P: %u pkts", s->rx_p2p);
traceEvent(TRACE_NORMAL, " TX Supernode: %u pkts (%u broadcast)", s->tx_sup, s->tx_sup_broadcast);
traceEvent(TRACE_NORMAL, " RX Supernode: %u pkts (%u broadcast)", s->rx_sup, s->rx_sup_broadcast);
traceEvent(TRACE_NORMAL, "**********************************");
}
/* ************************************** */
int run_edge_loop (n2n_edge_t *eee) {
size_t numPurged;
time_t lastIfaceCheck = 0;
time_t lastTransop = 0;
time_t last_purge_known = 0;
time_t last_purge_pending = 0;
uint16_t expected = sizeof(uint16_t);
uint16_t position = 0;
uint8_t pktbuf[N2N_PKT_BUF_SIZE + sizeof(uint16_t)]; /* buffer + prepended buffer length in case of tcp */
#ifdef WIN32
struct tunread_arg arg;
arg.eee = eee;
HANDLE tun_read_thread = startTunReadThread(&arg);
#endif
*eee->keep_running = 1;
update_supernode_reg(eee, time(NULL));
/* Main loop
*
* select() is used to wait for input on either the TAP fd or the UDP/TCP
* socket. When input is present the data is read and processed by either
* readFromIPSocket() or edge_read_from_tap()
*/
while(*eee->keep_running) {
int rc, max_sock = 0;
fd_set socket_mask;
struct timeval wait_time;
time_t now;
FD_ZERO(&socket_mask);
FD_SET(eee->udp_mgmt_sock, &socket_mask);
max_sock = eee->udp_mgmt_sock;
if(eee->sock >= 0) {
FD_SET(eee->sock, &socket_mask);
max_sock = max(eee->sock, eee->udp_mgmt_sock);
}
#ifndef SKIP_MULTICAST_PEERS_DISCOVERY
if((eee->conf.allow_p2p)
&& (eee->conf.preferred_sock.family == (uint8_t)AF_INVALID)) {
FD_SET(eee->udp_multicast_sock, &socket_mask);
max_sock = max(eee->sock, eee->udp_multicast_sock);
}
#endif
#ifndef WIN32
FD_SET(eee->device.fd, &socket_mask);
max_sock = max(max_sock, eee->device.fd);
#endif
wait_time.tv_sec = (eee->sn_wait) ? (SOCKET_TIMEOUT_INTERVAL_SECS / 10 + 1) : (SOCKET_TIMEOUT_INTERVAL_SECS);
wait_time.tv_usec = 0;
rc = select(max_sock + 1, &socket_mask, NULL, NULL, &wait_time);
now = time(NULL);
// make sure ciphers are updated before the packet is treated
if((now - lastTransop) > TRANSOP_TICK_INTERVAL) {
lastTransop = now;
eee->transop.tick(&eee->transop, now);
}
if(rc > 0) {
// any or all of the FDs could have input; check them all
// external
if(FD_ISSET(eee->sock, &socket_mask)) {
if(0 != fetch_and_eventually_process_data(eee, eee->sock,
pktbuf, &expected, &position,
now)) {
*eee->keep_running = 0;
break;
}
if(eee->conf.connect_tcp) {
if((expected >= N2N_PKT_BUF_SIZE) || (position >= N2N_PKT_BUF_SIZE)) {
// something went wrong, possibly even before
// e.g. connection failure/closure in the middle of transmission (between len & data)
supernode_disconnect(eee);
eee->sn_wait = 1;
expected = sizeof(uint16_t);
position = 0;
}
}
}
#ifndef SKIP_MULTICAST_PEERS_DISCOVERY
if(FD_ISSET(eee->udp_multicast_sock, &socket_mask)) {
if(0 != fetch_and_eventually_process_data(eee, eee->udp_multicast_sock,
pktbuf, &expected, &position,
now)) {
*eee->keep_running = 0;
break;
}
}
#endif
if(FD_ISSET(eee->udp_mgmt_sock, &socket_mask)) {
// read from the management port socket
readFromMgmtSocket(eee);
if(!(*eee->keep_running))
break;
}
#ifndef WIN32
if(FD_ISSET(eee->device.fd, &socket_mask)) {
// read an ethernet frame from the TAP socket; write on the IP socket
edge_read_from_tap(eee);
}
#endif
}
// finished processing select data
update_supernode_reg(eee, now);
numPurged = 0;
// keep, i.e. do not purge, the known peers while no supernode supernode connection
if(!eee->sn_wait)
numPurged = purge_expired_nodes(&eee->known_peers,
eee->sock, NULL,
&last_purge_known,
PURGE_REGISTRATION_FREQUENCY, REGISTRATION_TIMEOUT);
numPurged += purge_expired_nodes(&eee->pending_peers,
eee->sock, NULL,
&last_purge_pending,
PURGE_REGISTRATION_FREQUENCY, REGISTRATION_TIMEOUT);
if(numPurged > 0) {
traceEvent(TRACE_INFO, "%u peers removed. now: pending=%u, operational=%u",
numPurged,
HASH_COUNT(eee->pending_peers),
HASH_COUNT(eee->known_peers));
}
if((eee->conf.tuntap_ip_mode == TUNTAP_IP_MODE_DHCP) &&
((now - lastIfaceCheck) > IFACE_UPDATE_INTERVAL)) {
uint32_t old_ip = eee->device.ip_addr;
traceEvent(TRACE_NORMAL, "re-checking dynamic IP address");
tuntap_get_address(&(eee->device));
lastIfaceCheck = now;
if((old_ip != eee->device.ip_addr) && eee->cb.ip_address_changed)
eee->cb.ip_address_changed(eee, old_ip, eee->device.ip_addr);
}
sort_supernodes(eee, now);
eee->resolution_request = resolve_check(eee->resolve_parameter, eee->resolution_request, now);
if(eee->cb.main_loop_period)
eee->cb.main_loop_period(eee, now);
} /* while */
send_unregister_super(eee);
#ifdef WIN32
WaitForSingleObject(tun_read_thread, INFINITE);
#endif
closesocket(eee->sock);
return(0);
}
/* ************************************** */
/** Deinitialise the edge and deallocate any owned memory. */
void edge_term (n2n_edge_t * eee) {
resolve_cancel_thread(eee->resolve_parameter);
if(eee->sock >= 0)
closesocket(eee->sock);
if(eee->udp_mgmt_sock >= 0)
closesocket(eee->udp_mgmt_sock);
#ifndef SKIP_MULTICAST_PEERS_DISCOVERY
if(eee->udp_multicast_sock >= 0)
closesocket(eee->udp_multicast_sock);
#endif
clear_peer_list(&eee->pending_peers);
clear_peer_list(&eee->known_peers);
eee->transop.deinit(&eee->transop);
edge_cleanup_routes(eee);
destroy_network_traffic_filter(eee->network_traffic_filter);
closeTraceFile();
free(eee);
}
/* ************************************** */
static int edge_init_sockets (n2n_edge_t *eee) {
if(eee->udp_mgmt_sock >= 0)
closesocket(eee->udp_mgmt_sock);
#ifndef SKIP_MULTICAST_PEERS_DISCOVERY
if(eee->udp_multicast_sock >= 0)
closesocket(eee->udp_multicast_sock);
#endif
eee->udp_mgmt_sock = open_socket(eee->conf.mgmt_port, INADDR_LOOPBACK, 0 /* UDP */);
if(eee->udp_mgmt_sock < 0) {
traceEvent(TRACE_ERROR, "failed to bind management UDP port %u", eee->conf.mgmt_port);
return(-2);
}
#ifndef SKIP_MULTICAST_PEERS_DISCOVERY
/* Populate the multicast group for local edge */
eee->multicast_peer.family = AF_INET;
eee->multicast_peer.port = N2N_MULTICAST_PORT;
eee->multicast_peer.addr.v4[0] = 224; /* N2N_MULTICAST_GROUP */
eee->multicast_peer.addr.v4[1] = 0;
eee->multicast_peer.addr.v4[2] = 0;
eee->multicast_peer.addr.v4[3] = 68;
eee->udp_multicast_sock = open_socket(N2N_MULTICAST_PORT, INADDR_ANY, 0 /* UDP */);
if(eee->udp_multicast_sock < 0)
return(-3);
else {
u_int enable_reuse = 1;
/* allow multiple sockets to use the same PORT number */
setsockopt(eee->udp_multicast_sock, SOL_SOCKET, SO_REUSEADDR, (char *)&enable_reuse, sizeof(enable_reuse));
#ifdef SO_REUSEPORT /* no SO_REUSEPORT in Windows / old linux versions */
setsockopt(eee->udp_multicast_sock, SOL_SOCKET, SO_REUSEPORT, &enable_reuse, sizeof(enable_reuse));
#endif
}
#endif
return(0);
}
/* ************************************** */
#ifdef __linux__
static uint32_t get_gateway_ip () {
FILE *fd;
char *token = NULL;
char *gateway_ip_str = NULL;
char buf[256];
uint32_t gateway = 0;
if(!(fd = fopen("/proc/net/route", "r")))
return(0);
while(fgets(buf, sizeof(buf), fd)) {
if(strtok(buf, "\t") && (token = strtok(NULL, "\t")) && (!strcmp(token, "00000000"))) {
token = strtok(NULL, "\t");
if(token) {
struct in_addr addr;
addr.s_addr = strtoul(token, NULL, 16);
gateway_ip_str = inet_ntoa(addr);
if(gateway_ip_str) {
gateway = addr.s_addr;
break;
}
}
}
}
fclose(fd);
return(gateway);
}
static char* route_cmd_to_str (int cmd, const n2n_route_t *route, char *buf, size_t bufsize) {
const char *cmd_str;
struct in_addr addr;
char netbuf[64], gwbuf[64];
switch(cmd) {
case RTM_NEWROUTE:
cmd_str = "Add";
break;
case RTM_DELROUTE:
cmd_str = "Delete";
break;
default:
cmd_str = "?";
}
addr.s_addr = route->net_addr;
inet_ntop(AF_INET, &addr, netbuf, sizeof(netbuf));
addr.s_addr = route->gateway;
inet_ntop(AF_INET, &addr, gwbuf, sizeof(gwbuf));
snprintf(buf, bufsize, "%s %s/%d via %s", cmd_str, netbuf, route->net_bitlen, gwbuf);
return(buf);
}
/* Adapted from https://olegkutkov.me/2019/08/29/modifying-linux-network-routes-using-netlink/ */
#define NLMSG_TAIL(nmsg) \
((struct rtattr *) (((char *) (nmsg)) + NLMSG_ALIGN((nmsg)->nlmsg_len)))
/* Add new data to rtattr */
static int rtattr_add (struct nlmsghdr *n, int maxlen, int type, const void *data, int alen) {
int len = RTA_LENGTH(alen);
struct rtattr *rta;
if(NLMSG_ALIGN(n->nlmsg_len) + RTA_ALIGN(len) > maxlen) {
traceEvent(TRACE_ERROR, "rtattr_add error: message exceeded bound of %d\n", maxlen);
return -1;
}
rta = NLMSG_TAIL(n);
rta->rta_type = type;
rta->rta_len = len;
if(alen)
memcpy(RTA_DATA(rta), data, alen);
n->nlmsg_len = NLMSG_ALIGN(n->nlmsg_len) + RTA_ALIGN(len);
return 0;
}
static int routectl (int cmd, int flags, n2n_route_t *route, int if_idx) {
int rv = -1;
int rv2;
char nl_buf[8192]; /* >= 8192 to avoid truncation, see "man 7 netlink" */
char route_buf[256];
struct iovec iov;
struct msghdr msg;
struct sockaddr_nl sa;
uint8_t read_reply = 1;
int nl_sock;
struct {
struct nlmsghdr n;
struct rtmsg r;
char buf[4096];
} nl_request;
if((nl_sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE)) == -1) {
traceEvent(TRACE_ERROR, "netlink socket creation failed [%d]: %s", errno, strerror(errno));
return(-1);
}
/* Subscribe to route change events */
iov.iov_base = nl_buf;
iov.iov_len = sizeof(nl_buf);
memset(&sa, 0, sizeof(sa));
sa.nl_family = PF_NETLINK;
sa.nl_groups = RTMGRP_IPV4_ROUTE | RTMGRP_NOTIFY;
sa.nl_pid = getpid();
memset(&msg, 0, sizeof(msg));
msg.msg_name = &sa;
msg.msg_namelen = sizeof(sa);
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
/* Subscribe to route events */
if(bind(nl_sock, (struct sockaddr*)&sa, sizeof(sa)) == -1) {
traceEvent(TRACE_ERROR, "netlink socket bind failed [%d]: %s", errno, strerror(errno));
goto out;
}
/* Initialize request structure */
memset(&nl_request, 0, sizeof(nl_request));
nl_request.n.nlmsg_len = NLMSG_LENGTH(sizeof(struct rtmsg));
nl_request.n.nlmsg_flags = NLM_F_REQUEST | flags;
nl_request.n.nlmsg_type = cmd;
nl_request.r.rtm_family = AF_INET;
nl_request.r.rtm_table = RT_TABLE_MAIN;
nl_request.r.rtm_scope = RT_SCOPE_NOWHERE;
/* Set additional flags if NOT deleting route */
if(cmd != RTM_DELROUTE) {
nl_request.r.rtm_protocol = RTPROT_BOOT;
nl_request.r.rtm_type = RTN_UNICAST;
}
nl_request.r.rtm_family = AF_INET;
nl_request.r.rtm_dst_len = route->net_bitlen;
/* Select scope, for simplicity we supports here only IPv6 and IPv4 */
if(nl_request.r.rtm_family == AF_INET6)
nl_request.r.rtm_scope = RT_SCOPE_UNIVERSE;
else
nl_request.r.rtm_scope = RT_SCOPE_LINK;
/* Set gateway */
if(route->net_bitlen) {
if(rtattr_add(&nl_request.n, sizeof(nl_request), RTA_GATEWAY, &route->gateway, 4) < 0)
goto out;
nl_request.r.rtm_scope = 0;
nl_request.r.rtm_family = AF_INET;
}
/* Don't set destination and interface in case of default gateways */
if(route->net_bitlen) {
/* Set destination network */
if(rtattr_add(&nl_request.n, sizeof(nl_request), /*RTA_NEWDST*/ RTA_DST, &route->net_addr, 4) < 0)
goto out;
/* Set interface */
if(if_idx > 0) {
if(rtattr_add(&nl_request.n, sizeof(nl_request), RTA_OIF, &if_idx, sizeof(int)) < 0)
goto out;
}
}
/* Send message to the netlink */
if((rv2 = send(nl_sock, &nl_request, sizeof(nl_request), 0)) != sizeof(nl_request)) {
traceEvent(TRACE_ERROR, "netlink send failed [%d]: %s", errno, strerror(errno));
goto out;
}
/* Wait for the route notification. Assume that the first reply we get is the correct one. */
traceEvent(TRACE_DEBUG, "waiting for netlink response...");
while(read_reply) {
ssize_t len = recvmsg(nl_sock, &msg, 0);
struct nlmsghdr *nh;
for(nh = (struct nlmsghdr *)nl_buf; NLMSG_OK(nh, len); nh = NLMSG_NEXT(nh, len)) {
/* Stop after the first reply */
read_reply = 0;
if(nh->nlmsg_type == NLMSG_ERROR) {
struct nlmsgerr *err = NLMSG_DATA(nh);
int errcode = err->error;
if(errcode < 0)
errcode = -errcode;
/* Ignore EEXIST as existing rules are ok */
if(errcode != EEXIST) {
traceEvent(TRACE_ERROR, "[err=%d] route: %s", errcode, route_cmd_to_str(cmd, route, route_buf, sizeof(route_buf)));
goto out;
}
}
if(nh->nlmsg_type == NLMSG_DONE)
break;
if(nh->nlmsg_type == cmd) {
traceEvent(TRACE_DEBUG, "Found netlink reply");
break;
}
}
}
traceEvent(TRACE_DEBUG, route_cmd_to_str(cmd, route, route_buf, sizeof(route_buf)));
rv = 0;
out:
close(nl_sock);
return(rv);
}
#endif
/* ************************************** */
#ifdef __linux__
static int edge_init_routes_linux (n2n_edge_t *eee, n2n_route_t *routes, uint16_t num_routes) {
int i;
for(i = 0; i<num_routes; i++) {
n2n_route_t *route = &routes[i];
if((route->net_addr == 0) && (route->net_bitlen == 0)) {
/* This is a default gateway rule. We need to:
*
* 1. Add a route to the supernode via the host internet gateway
* 2. Add the new default gateway route
*
* Instead of modifying the system default gateway, we use the trick
* of adding a route to the networks 0.0.0.0/1 and 128.0.0.0/1, thus
* covering the whole IPv4 range. Such routes in linux take precedence
* over the default gateway (0.0.0.0/0) since are more specific.
* This leaves the default gateway unchanged so that after n2n is
* stopped the cleanup is easier.
* See https://github.com/zerotier/ZeroTierOne/issues/178#issuecomment-204599227
*/
n2n_sock_t sn;
n2n_route_t custom_route;
uint32_t *a;
if(eee->sn_route_to_clean) {
traceEvent(TRACE_ERROR, "only one default gateway route allowed");
return(-1);
}
if(eee->conf.sn_num != 1) {
traceEvent(TRACE_ERROR, "only one supernode supported with routes");
return(-1);
}
if(supernode2sock(&sn, eee->conf.supernodes->ip_addr) < 0)
return(-1);
if(sn.family != AF_INET) {
traceEvent(TRACE_ERROR, "only IPv4 routes supported");
return(-1);
}
a = (u_int32_t*)sn.addr.v4;
custom_route.net_addr = *a;
custom_route.net_bitlen = 32;
custom_route.gateway = get_gateway_ip();
if(!custom_route.gateway) {
traceEvent(TRACE_ERROR, "could not determine the gateway IP address");
return(-1);
}
/* ip route add supernode via internet_gateway */
if(routectl(RTM_NEWROUTE, NLM_F_CREATE | NLM_F_EXCL, &custom_route, -1) < 0)
return(-1);
/* Save the route to delete it when n2n is stopped */
eee->sn_route_to_clean = calloc(1, sizeof(n2n_route_t));
/* Store a copy of the rules into the runtime to delete it during shutdown */
if(eee->sn_route_to_clean)
*eee->sn_route_to_clean = custom_route;
/* ip route add 0.0.0.0/1 via n2n_gateway */
custom_route.net_addr = 0;
custom_route.net_bitlen = 1;
custom_route.gateway = route->gateway;
if(routectl(RTM_NEWROUTE, NLM_F_CREATE | NLM_F_EXCL, &custom_route, eee->device.if_idx) < 0)
return(-1);
/* ip route add 128.0.0.0/1 via n2n_gateway */
custom_route.net_addr = 128;
custom_route.net_bitlen = 1;
custom_route.gateway = route->gateway;
if(routectl(RTM_NEWROUTE, NLM_F_CREATE | NLM_F_EXCL, &custom_route, eee->device.if_idx) < 0)
return(-1);
} else {
/* ip route add net via n2n_gateway */
if(routectl(RTM_NEWROUTE, NLM_F_CREATE | NLM_F_EXCL, route, eee->device.if_idx) < 0)
return(-1);
}
}
return(0);
}
#endif
/* ************************************** */
#ifdef WIN32
static int edge_init_routes_win (n2n_edge_t *eee, n2n_route_t *routes, uint16_t num_routes, uint8_t verb /* 0 = add, 1 = delete */) {
int i;
struct in_addr net_addr, gateway;
char c_net_addr[32];
char c_gateway[32];
char c_interface[32];
char c_verb[32];
char cmd[256];
for(i = 0; i < num_routes; i++) {
n2n_route_t *route = &routes[i];
if((route->net_addr == 0) && (route->net_bitlen == 0)) {
// REVISIT: there might be a chance to get it working on Windows following the hints at
// https://docs.microsoft.com/en-us/windows/win32/api/netioapi/ns-netioapi-mib_ipinterface_row
//
// " The DisableDefaultRoutes member of the MIB_IPINTERFACE_ROW structure can be used to disable
// using the default route on an interface. This member can be used as a security measure by
// VPN clients to restrict split tunneling when split tunneling is not required by the VPN client.
// A VPN client can call the SetIpInterfaceEntry function to set the DisableDefaultRoutes member
// to TRUE when required. A VPN client can query the current state of the DisableDefaultRoutes
// member by calling the GetIpInterfaceEntry function. "
traceEvent(TRACE_WARNING, "the 0.0.0.0/0 route settings are not supported on Windows");
return(-1);
} else {
/* ip route add net via n2n_gateway */
memcpy(&net_addr, &(route->net_addr), sizeof(net_addr));
memcpy(&gateway, &(route->gateway), sizeof(gateway));
_snprintf(c_net_addr, sizeof(c_net_addr), inet_ntoa(net_addr));
_snprintf(c_gateway, sizeof(c_gateway), inet_ntoa(gateway));
_snprintf(c_interface, sizeof(c_interface), "if %u", eee->device.if_idx);
_snprintf(c_verb, sizeof(c_verb), verb ? "delete" : "add");
_snprintf(cmd, sizeof(cmd), "route %s %s/%d %s %s > nul", c_verb, c_net_addr, route->net_bitlen, c_gateway, c_interface);
traceEvent(TRACE_NORMAL, "ROUTE CMD = '%s'\n", cmd);
system(cmd);
}
}
return (0);
}
#endif // WIN32
/* ************************************** */
/* Add the user-provided routes to the linux routing table. Network routes
* are bound to the n2n TAP device, so they are automatically removed when
* the TAP device is destroyed. */
int edge_init_routes (n2n_edge_t *eee, n2n_route_t *routes, uint16_t num_routes) {
#ifdef __linux__
return edge_init_routes_linux(eee, routes, num_routes);
#endif
#ifdef WIN32
return edge_init_routes_win(eee, routes, num_routes, 0 /* add */);
#endif
return 0;
}
/* ************************************** */
static void edge_cleanup_routes (n2n_edge_t *eee) {
#ifdef __linux__
if(eee->sn_route_to_clean) {
/* ip route del supernode via internet_gateway */
routectl(RTM_DELROUTE, 0, eee->sn_route_to_clean, -1);
free(eee->sn_route_to_clean);
}
#endif
#ifdef WIN32
edge_init_routes_win(eee, eee->conf.routes, eee->conf.num_routes, 1 /* del */);
#endif
}
/* ************************************** */
void edge_init_conf_defaults (n2n_edge_conf_t *conf) {
char *tmp_string;
memset(conf, 0, sizeof(*conf));
conf->bind_address = INADDR_ANY; /* any address */
conf->local_port = 0 /* any port */;
conf->preferred_sock.family = AF_INVALID;
conf->mgmt_port = N2N_EDGE_MGMT_PORT; /* 5644 by default */
conf->transop_id = N2N_TRANSFORM_ID_NULL;
conf->header_encryption = HEADER_ENCRYPTION_NONE;
conf->compression = N2N_COMPRESSION_ID_NONE;
conf->drop_multicast = 1;
conf->allow_p2p = 1;
conf->disable_pmtu_discovery = 1;
conf->register_interval = REGISTER_SUPER_INTERVAL_DFL;
conf->tuntap_ip_mode = TUNTAP_IP_MODE_SN_ASSIGN;
/* reserve possible last char as null terminator. */
gethostname((char*)conf->dev_desc, N2N_DESC_SIZE-1);
if(getenv("N2N_KEY")) {
conf->encrypt_key = strdup(getenv("N2N_KEY"));
conf->transop_id = N2N_TRANSFORM_ID_AES;
}
if(getenv("N2N_COMMUNITY")) {
strncpy((char*)conf->community_name, getenv("N2N_COMMUNITY"), N2N_COMMUNITY_SIZE);
conf->community_name[N2N_COMMUNITY_SIZE - 1] = '\0';
}
if(getenv("N2N_PASSWORD")) {
conf->shared_secret = calloc(1, sizeof(n2n_private_public_key_t));
if(conf->shared_secret)
generate_private_key(*(conf->shared_secret), getenv("N2N_PASSWORD"));
}
tmp_string = calloc(1, strlen(N2N_MGMT_PASSWORD) + 1);
if(tmp_string) {
strncpy((char*)tmp_string, N2N_MGMT_PASSWORD, strlen(N2N_MGMT_PASSWORD) + 1);
conf->mgmt_password_hash = pearson_hash_64((uint8_t*)tmp_string, strlen(N2N_MGMT_PASSWORD));
free(tmp_string);
}
conf->sn_selection_strategy = SN_SELECTION_STRATEGY_LOAD;
conf->metric = 0;
}
/* ************************************** */
void edge_term_conf (n2n_edge_conf_t *conf) {
if(conf->routes) free(conf->routes);
if(conf->encrypt_key) free(conf->encrypt_key);
if(conf->network_traffic_filter_rules) {
filter_rule_t *el = 0, *tmp = 0;
HASH_ITER(hh, conf->network_traffic_filter_rules, el, tmp) {
HASH_DEL(conf->network_traffic_filter_rules, el);
free(el);
}
}
}
/* ************************************** */
const n2n_edge_conf_t* edge_get_conf (const n2n_edge_t *eee) {
return(&eee->conf);
}
/* ************************************** */
int edge_conf_add_supernode (n2n_edge_conf_t *conf, const char *ip_and_port) {
struct peer_info *sn;
n2n_sock_t *sock;
int skip_add;
int rv = -1;
sock = (n2n_sock_t*)calloc(1,sizeof(n2n_sock_t));
rv = supernode2sock(sock, ip_and_port);
if(rv < -2) { /* we accept resolver failure as it might resolve later */
traceEvent(TRACE_WARNING, "invalid supernode parameter.");
free(sock);
return 1;
}
skip_add = SN_ADD;
sn = add_sn_to_list_by_mac_or_sock(&(conf->supernodes), sock, null_mac, &skip_add);
if(sn != NULL) {
sn->ip_addr = calloc(1, N2N_EDGE_SN_HOST_SIZE);
if(sn->ip_addr != NULL) {
strncpy(sn->ip_addr, ip_and_port, N2N_EDGE_SN_HOST_SIZE - 1);
memcpy(&(sn->sock), sock, sizeof(n2n_sock_t));
memcpy(sn->mac_addr, null_mac, sizeof(n2n_mac_t));
sn->purgeable = SN_UNPURGEABLE;
}
}
free(sock);
traceEvent(TRACE_NORMAL, "adding supernode = %s", sn->ip_addr);
conf->sn_num++;
return 0;
}
/* ************************************** */
int quick_edge_init (char *device_name, char *community_name,
char *encrypt_key, char *device_mac,
char *local_ip_address,
char *supernode_ip_address_port,
int *keep_on_running) {
tuntap_dev tuntap;
n2n_edge_t *eee;
n2n_edge_conf_t conf;
int rv;
/* Setup the configuration */
edge_init_conf_defaults(&conf);
conf.encrypt_key = encrypt_key;
conf.transop_id = N2N_TRANSFORM_ID_AES;
conf.compression = N2N_COMPRESSION_ID_NONE;
snprintf((char*)conf.community_name, sizeof(conf.community_name), "%s", community_name);
edge_conf_add_supernode(&conf, supernode_ip_address_port);
/* Validate configuration */
if(edge_verify_conf(&conf) != 0)
return(-1);
/* Open the tuntap device */
if(tuntap_open(&tuntap, device_name, "static",
local_ip_address, "255.255.255.0",
device_mac, DEFAULT_MTU
#ifdef WIN32
, 0
#endif
) < 0)
return(-2);
/* Init edge */
if((eee = edge_init(&conf, &rv)) == NULL)
goto quick_edge_init_end;
eee->keep_running = keep_on_running;
rv = run_edge_loop(eee);
edge_term(eee);
edge_term_conf(&conf);
quick_edge_init_end:
tuntap_close(&tuntap);
return(rv);
}
/* ************************************** */