/**
* (C) 2007-18 - ntop.org and contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not see see
*
*/
#include "n2n.h"
#include "n2n_transforms.h"
#include "twofish.h"
#ifndef _MSC_VER
/* Not included in Visual Studio 2008 */
#include /* index() */
#endif
#define N2N_TWOFISH_NUM_SA 32 /* space for SAa */
#define N2N_TWOFISH_TRANSFORM_VERSION 1 /* version of the transform encoding */
struct sa_twofish
{
n2n_cipherspec_t spec; /* cipher spec parameters */
n2n_sa_t sa_id; /* security association index */
TWOFISH * enc_tf; /* tx state */
TWOFISH * dec_tf; /* rx state */
};
typedef struct sa_twofish sa_twofish_t;
/** Twofish transform state data.
*
* With a key-schedule in place this will be populated with a number of
* SAs. Each SA has a lifetime and some opque data. The opaque data for twofish
* consists of the SA number and key material.
*
*/
struct transop_tf
{
ssize_t tx_sa;
size_t num_sa;
sa_twofish_t sa[N2N_TWOFISH_NUM_SA];
};
typedef struct transop_tf transop_tf_t;
static int transop_deinit_twofish( n2n_trans_op_t * arg )
{
transop_tf_t * priv = (transop_tf_t *)arg->priv;
size_t i;
if ( priv )
{
/* Memory was previously allocated */
for (i=0; isa[i]);
TwoFishDestroy(sa->enc_tf); /* deallocate TWOFISH */
sa->enc_tf=NULL;
TwoFishDestroy(sa->dec_tf); /* deallocate TWOFISH */
sa->dec_tf=NULL;
sa->sa_id=0;
}
priv->num_sa=0;
priv->tx_sa=-1;
free(priv);
}
arg->priv=NULL; /* return to fully uninitialised state */
return 0;
}
static size_t tf_choose_tx_sa( transop_tf_t * priv )
{
return priv->tx_sa; /* set in tick */
}
#define TRANSOP_TF_VER_SIZE 1 /* Support minor variants in encoding in one module. */
#define TRANSOP_TF_NONCE_SIZE 4
#define TRANSOP_TF_SA_SIZE 4
/** The twofish packet format consists of:
*
* - a 8-bit twofish encoding version in clear text
* - a 32-bit SA number in clear text
* - ciphertext encrypted from a 32-bit nonce followed by the payload.
*
* [V|SSSS|nnnnDDDDDDDDDDDDDDDDDDDDD]
* |<------ encrypted ------>|
*/
static int transop_encode_twofish( n2n_trans_op_t * arg,
uint8_t * outbuf,
size_t out_len,
const uint8_t * inbuf,
size_t in_len )
{
int len=-1;
transop_tf_t * priv = (transop_tf_t *)arg->priv;
uint8_t assembly[N2N_PKT_BUF_SIZE];
uint32_t * pnonce;
if ( (in_len + TRANSOP_TF_NONCE_SIZE) <= N2N_PKT_BUF_SIZE )
{
if ( (in_len + TRANSOP_TF_NONCE_SIZE + TRANSOP_TF_SA_SIZE + TRANSOP_TF_VER_SIZE) <= out_len )
{
size_t idx=0;
sa_twofish_t * sa;
size_t tx_sa_num = 0;
/* The transmit sa is periodically updated */
tx_sa_num = tf_choose_tx_sa( priv );
sa = &(priv->sa[tx_sa_num]); /* Proper Tx SA index */
traceEvent( TRACE_DEBUG, "encode_twofish %lu with SA %lu.", in_len, sa->sa_id );
/* Encode the twofish format version. */
encode_uint8( outbuf, &idx, N2N_TWOFISH_TRANSFORM_VERSION );
/* Encode the security association (SA) number */
encode_uint32( outbuf, &idx, sa->sa_id );
/* The assembly buffer is a source for encrypting data. The nonce is
* written in first followed by the packet payload. The whole
* contents of assembly are encrypted. */
pnonce = (uint32_t *)assembly;
*pnonce = rand();
memcpy( assembly + TRANSOP_TF_NONCE_SIZE, inbuf, in_len );
/* Encrypt the assembly contents and write the ciphertext after the SA. */
len = TwoFishEncryptRaw( assembly, /* source */
outbuf + TRANSOP_TF_VER_SIZE + TRANSOP_TF_SA_SIZE,
in_len + TRANSOP_TF_NONCE_SIZE, /* enc size */
sa->enc_tf);
if ( len > 0 )
{
len += TRANSOP_TF_VER_SIZE + TRANSOP_TF_SA_SIZE; /* size of data carried in UDP. */
}
else
{
traceEvent( TRACE_ERROR, "encode_twofish encryption failed." );
}
}
else
{
traceEvent( TRACE_ERROR, "encode_twofish outbuf too small." );
}
}
else
{
traceEvent( TRACE_ERROR, "encode_twofish inbuf too big to encrypt." );
}
return len;
}
/* Search through the array of SAs to find the one with the required ID.
*
* @return array index where found or -1 if not found
*/
static ssize_t twofish_find_sa( const transop_tf_t * priv, const n2n_sa_t req_id )
{
size_t i;
for (i=0; i < priv->num_sa; ++i)
{
const sa_twofish_t * sa=NULL;
sa = &(priv->sa[i]);
if (req_id == sa->sa_id)
{
return i;
}
}
return -1;
}
/** The twofish packet format consists of:
*
* - a 8-bit twofish encoding version in clear text
* - a 32-bit SA number in clear text
* - ciphertext encrypted from a 32-bit nonce followed by the payload.
*
* [V|SSSS|nnnnDDDDDDDDDDDDDDDDDDDDD]
* |<------ encrypted ------>|
*/
static int transop_decode_twofish( n2n_trans_op_t * arg,
uint8_t * outbuf,
size_t out_len,
const uint8_t * inbuf,
size_t in_len )
{
int len=0;
transop_tf_t * priv = (transop_tf_t *)arg->priv;
uint8_t assembly[N2N_PKT_BUF_SIZE];
if ( ( (in_len - (TRANSOP_TF_VER_SIZE + TRANSOP_TF_SA_SIZE)) <= N2N_PKT_BUF_SIZE ) /* Cipher text fits in assembly */
&& (in_len >= (TRANSOP_TF_VER_SIZE + TRANSOP_TF_SA_SIZE + TRANSOP_TF_NONCE_SIZE) ) /* Has at least version, SA and nonce */
)
{
n2n_sa_t sa_rx;
ssize_t sa_idx=-1;
size_t rem=in_len;
size_t idx=0;
uint8_t tf_enc_ver=0;
/* Get the encoding version to make sure it is supported */
decode_uint8( &tf_enc_ver, inbuf, &rem, &idx );
if ( N2N_TWOFISH_TRANSFORM_VERSION == tf_enc_ver )
{
/* Get the SA number and make sure we are decrypting with the right one. */
decode_uint32( &sa_rx, inbuf, &rem, &idx );
sa_idx = twofish_find_sa(priv, sa_rx);
if ( sa_idx >= 0 )
{
sa_twofish_t * sa = &(priv->sa[sa_idx]);
traceEvent( TRACE_DEBUG, "decode_twofish %lu with SA %lu.", in_len, sa_rx, sa->sa_id );
len = TwoFishDecryptRaw( (void *)(inbuf + TRANSOP_TF_VER_SIZE + TRANSOP_TF_SA_SIZE),
assembly, /* destination */
(in_len - (TRANSOP_TF_VER_SIZE + TRANSOP_TF_SA_SIZE)),
sa->dec_tf);
if ( len > 0 )
{
/* Step over 4-byte random nonce value */
len -= TRANSOP_TF_NONCE_SIZE; /* size of ethernet packet */
memcpy( outbuf,
assembly + TRANSOP_TF_NONCE_SIZE,
len );
}
else
{
traceEvent( TRACE_ERROR, "decode_twofish decryption failed." );
}
}
else
{
/* Wrong security association; drop the packet as it is undecodable. */
traceEvent( TRACE_ERROR, "decode_twofish SA number %lu not found.", sa_rx );
/* REVISIT: should be able to load a new SA at this point to complete the decoding. */
}
}
else
{
/* Wrong security association; drop the packet as it is undecodable. */
traceEvent( TRACE_ERROR, "decode_twofish unsupported twofish version %u.", tf_enc_ver );
/* REVISIT: should be able to load a new SA at this point to complete the decoding. */
}
}
else
{
traceEvent( TRACE_ERROR, "decode_twofish inbuf wrong size (%ul) to decrypt.", in_len );
}
return len;
}
static int transop_addspec_twofish( n2n_trans_op_t * arg, const n2n_cipherspec_t * cspec )
{
int retval = 1;
ssize_t pstat=-1;
transop_tf_t * priv = (transop_tf_t *)arg->priv;
uint8_t keybuf[N2N_MAX_KEYSIZE];
if ( priv->num_sa < N2N_TWOFISH_NUM_SA )
{
const char * op = (const char *)cspec->opaque;
#ifdef __ANDROID_NDK__
const char *sep = strchr(op, '_');
#else
const char * sep = index( op, '_' );
#endif // __ANDROID_NDK__
if ( sep )
{
char tmp[256];
size_t s;
s = sep - op;
memcpy( tmp, cspec->opaque, s );
tmp[s]=0;
s = strlen(sep+1); /* sep is the _ which might be immediately followed by NULL */
priv->sa[priv->num_sa].spec = *cspec;
priv->sa[priv->num_sa].sa_id = strtoul(tmp, NULL, 10);
pstat = n2n_parse_hex( keybuf, N2N_MAX_KEYSIZE, sep+1, s );
if ( pstat > 0 )
{
priv->sa[priv->num_sa].enc_tf = TwoFishInit( keybuf, pstat);
priv->sa[priv->num_sa].dec_tf = TwoFishInit( keybuf, pstat);
traceEvent( TRACE_DEBUG, "transop_addspec_twofish sa_id=%u data=%s.\n",
priv->sa[priv->num_sa].sa_id, sep+1);
++(priv->num_sa);
retval = 0;
}
}
else
{
traceEvent( TRACE_ERROR, "transop_addspec_twofish : bad key data - missing '_'.\n");
}
}
else
{
traceEvent( TRACE_ERROR, "transop_addspec_twofish : full.\n");
}
return retval;
}
static n2n_tostat_t transop_tick_twofish( n2n_trans_op_t * arg, time_t now )
{
transop_tf_t * priv = (transop_tf_t *)arg->priv;
size_t i;
int found=0;
n2n_tostat_t r;
memset( &r, 0, sizeof(r) );
traceEvent( TRACE_DEBUG, "transop_tf tick num_sa=%u", priv->num_sa );
for ( i=0; i < priv->num_sa; ++i )
{
if ( 0 == validCipherSpec( &(priv->sa[i].spec), now ) )
{
time_t remaining = priv->sa[i].spec.valid_until - now;
traceEvent( TRACE_INFO, "transop_tf choosing tx_sa=%u (valid for %lu sec)", priv->sa[i].sa_id, remaining );
priv->tx_sa=i;
found=1;
break;
}
else
{
traceEvent( TRACE_DEBUG, "transop_tf tick rejecting sa=%u %lu -> %lu",
priv->sa[i].sa_id, priv->sa[i].spec.valid_from, priv->sa[i].spec.valid_until );
}
}
if ( 0==found)
{
traceEvent( TRACE_INFO, "transop_tf no keys are currently valid. Keeping tx_sa=%u", priv->tx_sa );
}
else
{
r.can_tx = 1;
r.tx_spec.t = N2N_TRANSFORM_ID_TWOFISH;
r.tx_spec = priv->sa[priv->tx_sa].spec;
}
return r;
}
int transop_twofish_setup( n2n_trans_op_t * ttt,
n2n_sa_t sa_num,
uint8_t * encrypt_pwd,
uint32_t encrypt_pwd_len )
{
int retval = 1;
transop_tf_t * priv = NULL;
if ( ttt->priv )
{
transop_deinit_twofish( ttt );
}
memset( ttt, 0, sizeof( n2n_trans_op_t ) );
priv = (transop_tf_t *) malloc( sizeof(transop_tf_t) );
if ( NULL != priv )
{
size_t i;
sa_twofish_t * sa=NULL;
/* install the private structure. */
ttt->priv = priv;
for(i=0; isa[i]);
sa->sa_id=0;
memset( &(sa->spec), 0, sizeof(n2n_cipherspec_t) );
sa->enc_tf=NULL;
sa->dec_tf=NULL;
}
priv->num_sa=1; /* There is one SA in the array. */
priv->tx_sa=0;
sa = &(priv->sa[priv->tx_sa]);
sa->sa_id=sa_num;
sa->spec.valid_until = 0x7fffffff;
/* This is a preshared key setup. Both Tx and Rx are using the same security association. */
sa->enc_tf = TwoFishInit(encrypt_pwd, encrypt_pwd_len);
sa->dec_tf = TwoFishInit(encrypt_pwd, encrypt_pwd_len);
if ( (sa->enc_tf) && (sa->dec_tf) )
{
ttt->transform_id = N2N_TRANSFORM_ID_TWOFISH;
ttt->deinit = transop_deinit_twofish;
ttt->addspec = transop_addspec_twofish;
ttt->tick = transop_tick_twofish; /* chooses a new tx_sa */
ttt->fwd = transop_encode_twofish;
ttt->rev = transop_decode_twofish;
retval = 0;
}
else
{
traceEvent( TRACE_ERROR, "TwoFishInit failed" );
}
}
else
{
memset( ttt, 0, sizeof(n2n_trans_op_t) );
traceEvent( TRACE_ERROR, "Failed to allocate priv for twofish" );
}
return retval;
}
int transop_twofish_init( n2n_trans_op_t * ttt )
{
int retval = 1;
transop_tf_t * priv = NULL;
if ( ttt->priv )
{
transop_deinit_twofish( ttt );
}
memset( ttt, 0, sizeof( n2n_trans_op_t ) );
priv = (transop_tf_t *) malloc( sizeof(transop_tf_t) );
if ( NULL != priv ) {
size_t i;
sa_twofish_t * sa=NULL;
/* install the private structure. */
ttt->priv = priv;
priv->num_sa=0;
priv->tx_sa=0; /* We will use this sa index for encoding. */
ttt->transform_id = N2N_TRANSFORM_ID_TWOFISH;
ttt->addspec = transop_addspec_twofish;
ttt->tick = transop_tick_twofish; /* chooses a new tx_sa */
ttt->deinit = transop_deinit_twofish;
ttt->fwd = transop_encode_twofish;
ttt->rev = transop_decode_twofish;
for(i=0; isa[i]);
sa->sa_id=0;
memset( &(sa->spec), 0, sizeof(n2n_cipherspec_t) );
sa->enc_tf=NULL;
sa->dec_tf=NULL;
}
retval = 0;
} else {
memset( ttt, 0, sizeof(n2n_trans_op_t) );
traceEvent( TRACE_ERROR, "Failed to allocate priv for twofish" );
}
return retval;
}