/**
* (C) 2007-20 - ntop.org and contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not see see
*
*/
// cipher SPECK -- 128 bit block size -- 128 and 256 bit key size -- CTR mode
// taken from (and modified: removed pure crypto-stream generation and seperated key expansion)
// https://github.com/nsacyber/simon-speck-supercop/blob/master/crypto_stream/speck128256ctr/
#include "speck.h"
#if defined (__AVX2__) // AVX support ----------------------------------------------------------------------------
#define LCS(x,r) (((x)<>(64-r)))
#define RCS(x,r) (((x)>>r)|((x)<<(64-r)))
#define XOR _mm256_xor_si256
#define AND _mm256_and_si256
#define ADD _mm256_add_epi64
#define SL _mm256_slli_epi64
#define SR _mm256_srli_epi64
#define _q SET(0x3,0x1,0x2,0x0)
#define _four SET(0x4,0x4,0x4,0x4)
#define SET _mm256_set_epi64x
#define SET1(X,c) (X=SET(c,c,c,c))
#define SET4(X,c) (X=SET(c,c,c,c), X=ADD(X,_q))
#define LOW _mm256_unpacklo_epi64
#define HIGH _mm256_unpackhi_epi64
#define LD(ip) _mm256_loadu_si256((__m256i *)(ip))
#define ST(ip,X) _mm256_storeu_si256((__m256i *)(ip),X)
#define STORE(out,X,Y) (ST(out,LOW(Y,X)), ST(out+32,HIGH(Y,X)))
#define STORE_ALT(out,X,Y) (ST(out,LOW(X,Y)), ST(out+32,HIGH(X,Y)))
#define XOR_STORE(in,out,X,Y) (ST(out,XOR(LD(in),LOW(Y,X))), ST(out+32,XOR(LD(in+32),HIGH(Y,X))))
#define XOR_STORE_ALT(in,out,X,Y) (ST(out,XOR(LD(in),LOW(X,Y))), ST(out+32,XOR(LD(in+32),HIGH(X,Y))))
#define SHFL _mm256_shuffle_epi8
#define R8 SET(0x080f0e0d0c0b0a09LL,0x0007060504030201LL,0x080f0e0d0c0b0a09LL,0x0007060504030201LL)
#define L8 SET(0x0e0d0c0b0a09080fLL,0x0605040302010007LL,0x0e0d0c0b0a09080fLL,0x0605040302010007LL)
#define ROL8(X) (SHFL(X,L8))
#define ROR8(X) (SHFL(X,R8))
#define ROL(X,r) (XOR(SL(X,r),SR(X,(64-r))))
#define ROR(X,r) (XOR(SR(X,r),SL(X,(64-r))))
#define R(X,Y,k) (X=XOR(ADD(ROR8(X),Y),k), Y=XOR(ROL(Y,3),X))
#define Rx4(X,Y,k) (R(X[0],Y[0],k))
#define Rx8(X,Y,k) (R(X[0],Y[0],k), R(X[1],Y[1],k))
#define Rx12(X,Y,k) (R(X[0],Y[0],k), R(X[1],Y[1],k), R(X[2],Y[2],k))
#define Rx16(X,Y,k) (X[0]=ROR8(X[0]), X[0]=ADD(X[0],Y[0]), X[1]=ROR8(X[1]), X[1]=ADD(X[1],Y[1]), \
X[2]=ROR8(X[2]), X[2]=ADD(X[2],Y[2]), X[3]=ROR8(X[3]), X[3]=ADD(X[3],Y[3]), \
X[0]=XOR(X[0],k), X[1]=XOR(X[1],k), X[2]=XOR(X[2],k), X[3]=XOR(X[3],k), \
Z[0]=Y[0], Z[1]=Y[1], Z[2]=Y[2], Z[3]=Y[3], \
Z[0]=SL(Z[0],3), Y[0]=SR(Y[0],61), Z[1]=SL(Z[1],3), Y[1]=SR(Y[1],61), \
Z[2]=SL(Z[2],3), Y[2]=SR(Y[2],61), Z[3]=SL(Z[3],3), Y[3]=SR(Y[3],61), \
Y[0]=XOR(Y[0],Z[0]), Y[1]=XOR(Y[1],Z[1]), Y[2]=XOR(Y[2],Z[2]), Y[3]=XOR(Y[3],Z[3]), \
Y[0]=XOR(X[0],Y[0]), Y[1]=XOR(X[1],Y[1]), Y[2]=XOR(X[2],Y[2]), Y[3]=XOR(X[3],Y[3]))
#define Rx1(x,y,k) (x[0]=RCS(x[0],8), x[0]+=y[0], x[0]^=k, y[0]=LCS(y[0],3), y[0]^=x[0])
#define Rx1b(x,y,k) (x=RCS(x,8), x+=y, x^=k, y=LCS(y,3), y^=x)
#define Rx2(x,y,k) (x[0]=RCS(x[0],8), x[1]=RCS(x[1],8), x[0]+=y[0], x[1]+=y[1], \
x[0]^=k, x[1]^=k, y[0]=LCS(y[0],3), y[1]=LCS(y[1],3), y[0]^=x[0], y[1]^=x[1])
#define Encrypt_128(X,Y,k,n) (Rx##n(X,Y,k[0]), Rx##n(X,Y,k[1]), Rx##n(X,Y,k[2]), Rx##n(X,Y,k[3]), Rx##n(X,Y,k[4]), Rx##n(X,Y,k[5]), Rx##n(X,Y,k[6]), Rx##n(X,Y,k[7]), \
Rx##n(X,Y,k[8]), Rx##n(X,Y,k[9]), Rx##n(X,Y,k[10]), Rx##n(X,Y,k[11]), Rx##n(X,Y,k[12]), Rx##n(X,Y,k[13]), Rx##n(X,Y,k[14]), Rx##n(X,Y,k[15]), \
Rx##n(X,Y,k[16]), Rx##n(X,Y,k[17]), Rx##n(X,Y,k[18]), Rx##n(X,Y,k[19]), Rx##n(X,Y,k[20]), Rx##n(X,Y,k[21]), Rx##n(X,Y,k[22]), Rx##n(X,Y,k[23]), \
Rx##n(X,Y,k[24]), Rx##n(X,Y,k[25]), Rx##n(X,Y,k[26]), Rx##n(X,Y,k[27]), Rx##n(X,Y,k[28]), Rx##n(X,Y,k[29]), Rx##n(X,Y,k[30]), Rx##n(X,Y,k[31]))
#define Encrypt_256(X,Y,k,n) (Encrypt_128(X,Y,k,n), \
Rx##n(X,Y,k[32]), Rx##n(X,Y,k[33]))
#define RK(X,Y,k,key,i) (SET1(k[i],Y), key[i]=Y, X=RCS(X,8), X+=Y, X^=i, Y=LCS(Y,3), Y^=X)
#define EK(A,B,C,D,k,key) (RK(B,A,k,key,0), RK(C,A,k,key,1), RK(D,A,k,key,2), RK(B,A,k,key,3), RK(C,A,k,key,4), RK(D,A,k,key,5), RK(B,A,k,key,6), \
RK(C,A,k,key,7), RK(D,A,k,key,8), RK(B,A,k,key,9), RK(C,A,k,key,10), RK(D,A,k,key,11), RK(B,A,k,key,12), RK(C,A,k,key,13), \
RK(D,A,k,key,14), RK(B,A,k,key,15), RK(C,A,k,key,16), RK(D,A,k,key,17), RK(B,A,k,key,18), RK(C,A,k,key,19), RK(D,A,k,key,20), \
RK(B,A,k,key,21), RK(C,A,k,key,22), RK(D,A,k,key,23), RK(B,A,k,key,24), RK(C,A,k,key,25), RK(D,A,k,key,26), RK(B,A,k,key,27), \
RK(C,A,k,key,28), RK(D,A,k,key,29), RK(B,A,k,key,30), RK(C,A,k,key,31), RK(D,A,k,key,32), RK(B,A,k,key,33))
#define Encrypt_Dispatcher(keysize) \
u64 x[2], y[2]; \
u256 X[4], Y[4], Z[4]; \
\
if(numbytes == 16) { \
x[0] = nonce[1]; y[0] = nonce[0]; nonce[0]++; \
Encrypt_##keysize(x, y, ctx->key, 1); \
((u64 *)out)[1] = x[0]; ((u64 *)out)[0] = y[0]; \
return 0; \
} \
\
if(numbytes == 32) { \
x[0] = nonce[1]; y[0] = nonce[0]; nonce[0]++; \
x[1] = nonce[1]; y[1] = nonce[0]; nonce[0]++; \
Encrypt_##keysize(x , y, ctx->key, 2); \
((u64 *)out)[1] = x[0] ^ ((u64 *)in)[1]; ((u64 *)out)[0] = y[0] ^ ((u64 *)in)[0]; \
((u64 *)out)[3] = x[1] ^ ((u64 *)in)[3]; ((u64 *)out)[2] = y[1] ^ ((u64 *)in)[2]; \
return 0; \
} \
\
SET1(X[0], nonce[1]); SET4(Y[0], nonce[0]); \
\
if(numbytes == 64) \
Encrypt_##keysize(X, Y, ctx->rk, 4); \
else { \
X[1] = X[0]; \
Y[1] = ADD(Y[0], _four); \
if(numbytes == 128) \
Encrypt_##keysize(X, Y, ctx->rk, 8); \
else { \
X[2] = X[0]; \
Y[2] = ADD(Y[1], _four); \
if(numbytes == 192) \
Encrypt_##keysize(X, Y, ctx->rk, 12); \
else { \
X[3] = X[0]; \
Y[3] = ADD(Y[2], _four); \
Encrypt_##keysize(X, Y, ctx->rk, 16); \
} \
} \
} \
\
nonce[0] += (numbytes >> 4); \
\
XOR_STORE(in, out, X[0], Y[0]); \
if (numbytes >= 128) \
XOR_STORE(in + 64, out + 64, X[1], Y[1]); \
if(numbytes >= 192) \
XOR_STORE(in + 128, out + 128, X[2], Y[2]); \
if(numbytes >= 256) \
XOR_STORE(in + 192, out + 192, X[3], Y[3]); \
\
return 0
static int speck_encrypt_xor(unsigned char *out, const unsigned char *in, u64 nonce[], speck_context_t *ctx, int numbytes) {
if(ctx->keysize == 256) {
Encrypt_Dispatcher(256);
} else {
Encrypt_Dispatcher(128);
}
}
static int internal_speck_ctr(unsigned char *out, const unsigned char *in, unsigned long long inlen,
const unsigned char *n, speck_context_t *ctx) {
int i;
u64 nonce[2];
unsigned char block[16];
u64 * const block64 = (u64 *)block;
if (!inlen)
return 0;
nonce[0] = ((u64 *)n)[0];
nonce[1] = ((u64 *)n)[1];
while(inlen >= 256) {
speck_encrypt_xor(out, in, nonce, ctx, 256);
in += 256; inlen -= 256; out += 256;
}
if(inlen >= 192) {
speck_encrypt_xor(out, in, nonce, ctx, 192);
in += 192; inlen -= 192; out += 192;
}
if(inlen >= 128) {
speck_encrypt_xor(out, in, nonce, ctx, 128);
in += 128; inlen -= 128; out += 128;
}
if(inlen >= 64) {
speck_encrypt_xor(out, in, nonce, ctx, 64);
in += 64; inlen -= 64; out += 64;
}
if(inlen >= 32) {
speck_encrypt_xor(out, in, nonce, ctx, 32);
in += 32; inlen -= 32; out += 32;
}
if(inlen >= 16) {
speck_encrypt_xor(block, in, nonce, ctx, 16);
((u64 *)out)[0] = block64[0] ^ ((u64 *)in)[0];
((u64 *)out)[1] = block64[1] ^ ((u64 *)in)[1];
in += 16; inlen -= 16; out += 16;
}
if(inlen > 0) {
speck_encrypt_xor(block, in, nonce, ctx, 16);
for(i = 0; i < inlen; i++)
out[i] = block[i] ^ in[i];
}
return 0;
}
static int speck_expand_key (speck_context_t *ctx, const unsigned char *k, int keysize) {
u64 K[4];
size_t i;
for(i = 0; i < (keysize >> 6); i++)
K[i] = ((u64 *)k)[i];
// 128 bit has only two keys A and B thus replacing both C and D with B then
if(keysize == 128) {
EK(K[0], K[1], K[1], K[1], ctx->rk, ctx->key);
} else {
EK(K[0], K[1], K[2], K[3], ctx->rk, ctx->key);
}
ctx->keysize = keysize;
return 0;
}
#elif defined (__SSE2__) // SSE support ---------------------------------------------------------------------------
#define LCS(x,r) (((x)<>(64-r)))
#define RCS(x,r) (((x)>>r)|((x)<<(64-r)))
#define XOR _mm_xor_si128
#define AND _mm_and_si128
#define ADD _mm_add_epi64
#define SL _mm_slli_epi64
#define SR _mm_srli_epi64
#define _q SET(0x1,0x0)
#define _two SET(0x2,0x2)
#define SET _mm_set_epi64x
#define SET1(X,c) (X=SET(c,c))
#define SET2(X,c) (X=SET(c,c), X=ADD(X,_q))
#define LOW _mm_unpacklo_epi64
#define HIGH _mm_unpackhi_epi64
#define LD(ip) _mm_loadu_si128((__m128i *)(ip))
#define ST(ip,X) _mm_storeu_si128((__m128i *)(ip),X)
#define STORE(out,X,Y) (ST(out,LOW(Y,X)), ST(out+16,HIGH(Y,X)))
#define STORE_ALT(out,X,Y) (ST(out,LOW(X,Y)), ST(out+16,HIGH(X,Y)))
#define XOR_STORE(in,out,X,Y) (ST(out,XOR(LD(in),LOW(Y,X))), ST(out+16,XOR(LD(in+16),HIGH(Y,X))))
#define XOR_STORE_ALT(in,out,X,Y) (ST(out,XOR(LD(in),LOW(X,Y))), ST(out+16,XOR(LD(in+16),HIGH(X,Y))))
#define ROL(X,r) (XOR(SL(X,r),SR(X,(64-r))))
#define ROR(X,r) (XOR(SR(X,r),SL(X,(64-r))))
#if defined (__SSSE3__) // even SSSE3 -------------------------------
#define SHFL _mm_shuffle_epi8
#define R8 _mm_set_epi64x(0x080f0e0d0c0b0a09LL,0x0007060504030201LL)
#define L8 _mm_set_epi64x(0x0e0d0c0b0a09080fLL,0x0605040302010007LL)
#define ROL8(X) (SHFL(X,L8))
#define ROR8(X) (SHFL(X,R8))
#else // regular SSE2 ------------------------------------------------
#define ROL8(X) (ROL(X,8))
#define ROR8(X) (ROR(X,8))
#endif // SSS3 vs. SSE2 ----------------------------------------------
#define R(X,Y,k) (X=XOR(ADD(ROR8(X),Y),k), Y=XOR(ROL(Y,3),X))
#define Rx2(X,Y,k) (R(X[0],Y[0],k))
#define Rx4(X,Y,k) (R(X[0],Y[0],k), R(X[1],Y[1],k))
#define Rx6(X,Y,k) (R(X[0],Y[0],k), R(X[1],Y[1],k), R(X[2],Y[2],k))
#define Rx8(X,Y,k) (X[0]=ROR8(X[0]), X[0]=ADD(X[0],Y[0]), X[1]=ROR8(X[1]), X[1]=ADD(X[1],Y[1]), \
X[2]=ROR8(X[2]), X[2]=ADD(X[2],Y[2]), X[3]=ROR8(X[3]), X[3]=ADD(X[3],Y[3]), \
X[0]=XOR(X[0],k), X[1]=XOR(X[1],k), X[2]=XOR(X[2],k), X[3]=XOR(X[3],k), \
Z[0]=Y[0], Z[1]=Y[1], Z[2]=Y[2], Z[3]=Y[3], \
Z[0]=SL(Z[0],3), Y[0]=SR(Y[0],61), Z[1]=SL(Z[1],3), Y[1]=SR(Y[1],61), \
Z[2]=SL(Z[2],3), Y[2]=SR(Y[2],61), Z[3]=SL(Z[3],3), Y[3]=SR(Y[3],61), \
Y[0]=XOR(Y[0],Z[0]), Y[1]=XOR(Y[1],Z[1]), Y[2]=XOR(Y[2],Z[2]), Y[3]=XOR(Y[3],Z[3]), \
Y[0]=XOR(X[0],Y[0]), Y[1]=XOR(X[1],Y[1]), Y[2]=XOR(X[2],Y[2]), Y[3]=XOR(X[3],Y[3]))
#define Rx1(x,y,k) (x[0]=RCS(x[0],8), x[0]+=y[0], x[0]^=k, y[0]=LCS(y[0],3), y[0]^=x[0])
#define Rx1b(x,y,k) (x=RCS(x,8), x+=y, x^=k, y=LCS(y,3), y^=x)
#define Encrypt_128(X,Y,k,n) (Rx##n(X,Y,k[0]), Rx##n(X,Y,k[1]), Rx##n(X,Y,k[2]), Rx##n(X,Y,k[3]), Rx##n(X,Y,k[4]), Rx##n(X,Y,k[5]), Rx##n(X,Y,k[6]), Rx##n(X,Y,k[7]), \
Rx##n(X,Y,k[8]), Rx##n(X,Y,k[9]), Rx##n(X,Y,k[10]), Rx##n(X,Y,k[11]), Rx##n(X,Y,k[12]), Rx##n(X,Y,k[13]), Rx##n(X,Y,k[14]), Rx##n(X,Y,k[15]), \
Rx##n(X,Y,k[16]), Rx##n(X,Y,k[17]), Rx##n(X,Y,k[18]), Rx##n(X,Y,k[19]), Rx##n(X,Y,k[20]), Rx##n(X,Y,k[21]), Rx##n(X,Y,k[22]), Rx##n(X,Y,k[23]), \
Rx##n(X,Y,k[24]), Rx##n(X,Y,k[25]), Rx##n(X,Y,k[26]), Rx##n(X,Y,k[27]), Rx##n(X,Y,k[28]), Rx##n(X,Y,k[29]), Rx##n(X,Y,k[30]), Rx##n(X,Y,k[31]))
#define Encrypt_256(X,Y,k,n) (Encrypt_128(X,Y,k,n), \
Rx##n(X,Y,k[32]), Rx##n(X,Y,k[33]))
#define RK(X,Y,k,key,i) (SET1(k[i],Y), key[i]=Y, X=RCS(X,8), X+=Y, X^=i, Y=LCS(Y,3), Y^=X)
#define EK(A,B,C,D,k,key) (RK(B,A,k,key,0), RK(C,A,k,key,1), RK(D,A,k,key,2), RK(B,A,k,key,3), RK(C,A,k,key,4), RK(D,A,k,key,5), RK(B,A,k,key,6), \
RK(C,A,k,key,7), RK(D,A,k,key,8), RK(B,A,k,key,9), RK(C,A,k,key,10), RK(D,A,k,key,11), RK(B,A,k,key,12), RK(C,A,k,key,13), \
RK(D,A,k,key,14), RK(B,A,k,key,15), RK(C,A,k,key,16), RK(D,A,k,key,17), RK(B,A,k,key,18), RK(C,A,k,key,19), RK(D,A,k,key,20), \
RK(B,A,k,key,21), RK(C,A,k,key,22), RK(D,A,k,key,23), RK(B,A,k,key,24), RK(C,A,k,key,25), RK(D,A,k,key,26), RK(B,A,k,key,27), \
RK(C,A,k,key,28), RK(D,A,k,key,29), RK(B,A,k,key,30), RK(C,A,k,key,31), RK(D,A,k,key,32), RK(B,A,k,key,33))
#define Encrypt_Dispatcher(keysize) \
u64 x[2], y[2]; \
u128 X[4], Y[4], Z[4]; \
\
if(numbytes == 16) { \
x[0] = nonce[1]; y[0] = nonce[0]; nonce[0]++; \
Encrypt_##keysize(x, y, ctx.key, 1); \
((u64 *)out)[1] = x[0]; ((u64 *)out)[0] = y[0]; \
return 0; \
} \
\
SET1(X[0], nonce[1]); SET2(Y[0], nonce[0]); \
\
if(numbytes == 32) \
Encrypt_##keysize(X, Y, ctx.rk, 2); \
else { \
X[1] = X[0]; Y[1] = ADD(Y[0], _two); \
if(numbytes == 64) \
Encrypt_##keysize(X, Y, ctx.rk, 4); \
else { \
X[2] = X[0]; Y[2] = ADD(Y[1], _two); \
if(numbytes == 96) \
Encrypt_##keysize(X, Y, ctx.rk, 6); \
else { \
X[3] = X[0]; Y[3] = ADD(Y[2], _two); \
Encrypt_##keysize(X, Y, ctx.rk, 8); \
} \
} \
} \
\
nonce[0] += (numbytes >> 4); \
\
XOR_STORE(in, out, X[0], Y[0]); \
if(numbytes >= 64) \
XOR_STORE(in + 32, out + 32, X[1], Y[1]); \
if(numbytes >= 96) \
XOR_STORE(in + 64, out + 64, X[2], Y[2]); \
if(numbytes >= 128) \
XOR_STORE(in + 96, out + 96, X[3], Y[3]); \
\
return 0
// attention: ctx is provided by value as it is faster in this case, astonishingly
static int speck_encrypt_xor (unsigned char *out, const unsigned char *in, u64 nonce[], const speck_context_t ctx, int numbytes) {
if(ctx.keysize == 256) {
Encrypt_Dispatcher(256);
} else {
Encrypt_Dispatcher(128);
}
}
// attention: ctx is provided by value as it is faster in this case, astonishingly
static int internal_speck_ctr (unsigned char *out, const unsigned char *in, unsigned long long inlen,
const unsigned char *n, const speck_context_t ctx) {
int i;
u64 nonce[2];
unsigned char block[16];
u64 * const block64 = (u64 *)block;
if(!inlen)
return 0;
nonce[0] = ((u64 *)n)[0];
nonce[1] = ((u64 *)n)[1];
while(inlen >= 128) {
speck_encrypt_xor(out, in, nonce, ctx, 128);
in += 128; inlen -= 128; out += 128;
}
if(inlen >= 96) {
speck_encrypt_xor(out, in, nonce, ctx, 96);
in += 96; inlen -= 96; out += 96;
}
if(inlen >= 64) {
speck_encrypt_xor(out, in, nonce, ctx, 64);
in += 64; inlen -= 64; out += 64;
}
if(inlen >= 32) {
speck_encrypt_xor(out, in, nonce, ctx, 32);
in += 32; inlen -= 32; out += 32;
}
if(inlen >= 16) {
speck_encrypt_xor(block, in, nonce, ctx, 16);
((u64 *)out)[0] = block64[0] ^ ((u64 *)in)[0];
((u64 *)out)[1] = block64[1] ^ ((u64 *)in)[1];
in += 16; inlen -= 16; out += 16;
}
if(inlen > 0) {
speck_encrypt_xor (block, in, nonce, ctx, 16);
for(i = 0; i < inlen; i++)
out[i] = block[i] ^ in[i];
}
return 0;
}
static int speck_expand_key (speck_context_t *ctx, const unsigned char *k, int keysize) {
u64 K[4];
size_t i;
for(i = 0; i < (keysize >> 6 ); i++)
K[i] = ((u64 *)k)[i];
// 128 bit has only two keys A and B thus replacing both C and D with B then
if(keysize == 128) {
EK(K[0], K[1], K[1], K[1], ctx->rk, ctx->key);
} else {
EK(K[0], K[1], K[2], K[3], ctx->rk, ctx->key);
}
ctx->keysize = keysize;
return 0;
}
#elif defined (__ARM_NEON) // NEON support -------------------------------------------------------------------
#define LCS(x,r) (((x)<>(64-r)))
#define RCS(x,r) (((x)>>r)|((x)<<(64-r)))
#define XOR veorq_u64
#define AND vandq_u64
#define ADD vaddq_u64
#define SL vshlq_n_u64
#define SR vshrq_n_u64
#define SET(a,b) vcombine_u64((uint64x1_t)(a),(uint64x1_t)(b))
#define SET1(X,c) (X=SET(c,c))
#define SET2(X,c) (SET1(X,c), X=ADD(X,SET(0x1ll,0x0ll)),c+=2)
#define LOW(Z) vgetq_lane_u64(Z,0)
#define HIGH(Z) vgetq_lane_u64(Z,1)
#define STORE(ip,X,Y) (((u64 *)(ip))[0]=HIGH(Y), ((u64 *)(ip))[1]=HIGH(X), ((u64 *)(ip))[2]=LOW(Y), ((u64 *)(ip))[3]=LOW(X))
#define XOR_STORE(in,out,X,Y) (Y=XOR(Y,SET(((u64 *)(in))[2],((u64 *)(in))[0])), X=XOR(X,SET(((u64 *)(in))[3],((u64 *)(in))[1])), STORE(out,X,Y))
#define ROR(X,r) vsriq_n_u64(SL(X,(64-r)),X,r)
#define ROL(X,r) ROR(X,(64-r))
#define tableR vcreate_u8(0x0007060504030201LL)
#define tableL vcreate_u8(0x0605040302010007LL)
#define ROR8(X) SET(vtbl1_u8((uint8x8_t)vget_low_u64(X),tableR), vtbl1_u8((uint8x8_t)vget_high_u64(X),tableR))
#define ROL8(X) SET(vtbl1_u8((uint8x8_t)vget_low_u64(X),tableL), vtbl1_u8((uint8x8_t)vget_high_u64(X),tableL))
#define R(X,Y,k) (X=XOR(ADD(ROR8(X),Y),k), Y=XOR(ROL(Y,3),X))
#define Rx2(X,Y,k) (R(X[0],Y[0],k))
#define Rx4(X,Y,k) (R(X[0],Y[0],k), R(X[1],Y[1],k))
#define Rx6(X,Y,k) (R(X[0],Y[0],k), R(X[1],Y[1],k), R(X[2],Y[2],k))
#define Rx8(X,Y,k) (X[0]=ROR8(X[0]), X[0]=ADD(X[0],Y[0]), X[0]=XOR(X[0],k), X[1]=ROR8(X[1]), X[1]=ADD(X[1],Y[1]), X[1]=XOR(X[1],k), \
X[2]=ROR8(X[2]), X[2]=ADD(X[2],Y[2]), X[2]=XOR(X[2],k), X[3]=ROR8(X[3]), X[3]=ADD(X[3],Y[3]), X[3]=XOR(X[3],k), \
Z[0]=SL(Y[0],3), Z[1]=SL(Y[1],3), Z[2]=SL(Y[2],3), Z[3]=SL(Y[3],3), \
Y[0]=SR(Y[0],61), Y[1]=SR(Y[1],61), Y[2]=SR(Y[2],61), Y[3]=SR(Y[3],61), \
Y[0]=XOR(Y[0],Z[0]), Y[1]=XOR(Y[1],Z[1]), Y[2]=XOR(Y[2],Z[2]), Y[3]=XOR(Y[3],Z[3]), \
Y[0]=XOR(X[0],Y[0]), Y[1]=XOR(X[1],Y[1]), Y[2]=XOR(X[2],Y[2]), Y[3]=XOR(X[3],Y[3]))
#define Rx1(x,y,k) (x[0]=RCS(x[0],8), x[0]+=y[0], x[0]^=k, y[0]=LCS(y[0],3), y[0]^=x[0])
#define Rx1b(x,y,k) (x=RCS(x,8), x+=y, x^=k, y=LCS(y,3), y^=x)
#define Encrypt_128(X,Y,k,n) (Rx##n(X,Y,k[0]), Rx##n(X,Y,k[1]), Rx##n(X,Y,k[2]), Rx##n(X,Y,k[3]), Rx##n(X,Y,k[4]), Rx##n(X,Y,k[5]), Rx##n(X,Y,k[6]), Rx##n(X,Y,k[7]), \
Rx##n(X,Y,k[8]), Rx##n(X,Y,k[9]), Rx##n(X,Y,k[10]), Rx##n(X,Y,k[11]), Rx##n(X,Y,k[12]), Rx##n(X,Y,k[13]), Rx##n(X,Y,k[14]), Rx##n(X,Y,k[15]), \
Rx##n(X,Y,k[16]), Rx##n(X,Y,k[17]), Rx##n(X,Y,k[18]), Rx##n(X,Y,k[19]), Rx##n(X,Y,k[20]), Rx##n(X,Y,k[21]), Rx##n(X,Y,k[22]), Rx##n(X,Y,k[23]), \
Rx##n(X,Y,k[24]), Rx##n(X,Y,k[25]), Rx##n(X,Y,k[26]), Rx##n(X,Y,k[27]), Rx##n(X,Y,k[28]), Rx##n(X,Y,k[29]), Rx##n(X,Y,k[30]), Rx##n(X,Y,k[31]))
#define Encrypt_256(X,Y,k,n) (Encrypt_128(X,Y,k,n), \
Rx##n(X,Y,k[32]), Rx##n(X,Y,k[33]))
#define RK(X,Y,k,key,i) (SET1(k[i],Y), key[i]=Y, X=RCS(X,8), X+=Y, X^=i, Y=LCS(Y,3), Y^=X)
#define EK(A,B,C,D,k,key) (RK(B,A,k,key,0), RK(C,A,k,key,1), RK(D,A,k,key,2), RK(B,A,k,key,3), RK(C,A,k,key,4), RK(D,A,k,key,5), RK(B,A,k,key,6), \
RK(C,A,k,key,7), RK(D,A,k,key,8), RK(B,A,k,key,9), RK(C,A,k,key,10), RK(D,A,k,key,11), RK(B,A,k,key,12), RK(C,A,k,key,13), \
RK(D,A,k,key,14), RK(B,A,k,key,15), RK(C,A,k,key,16), RK(D,A,k,key,17), RK(B,A,k,key,18), RK(C,A,k,key,19), RK(D,A,k,key,20), \
RK(B,A,k,key,21), RK(C,A,k,key,22), RK(D,A,k,key,23), RK(B,A,k,key,24), RK(C,A,k,key,25), RK(D,A,k,key,26), RK(B,A,k,key,27), \
RK(C,A,k,key,28), RK(D,A,k,key,29), RK(B,A,k,key,30), RK(C,A,k,key,31), RK(D,A,k,key,32), RK(B,A,k,key,33))
#define Encrypt_Dispatcher(keysize) \
u64 x[2], y[2]; \
u128 X[4], Y[4], Z[4]; \
\
if(numbytes == 16) { \
x[0] = nonce[1]; y[0]=nonce[0]; nonce[0]++; \
Encrypt_##keysize(x, y, ctx->key, 1); \
((u64 *)out)[1] = x[0]; ((u64 *)out)[0] = y[0]; \
return 0; \
} \
\
SET1(X[0], nonce[1]); SET2(Y[0], nonce[0]); \
\
if(numbytes == 32) \
Encrypt_##keysize(X, Y, ctx->rk, 2); \
else { \
X[1] = X[0]; SET2(Y[1], nonce[0]); \
if(numbytes == 64) \
Encrypt_##keysize(X, Y, ctx->rk, 4); \
else { \
X[2] = X[0]; SET2(Y[2], nonce[0]); \
if(numbytes == 96) \
Encrypt_##keysize(X, Y, ctx->rk, 6); \
else { \
X[3] = X[0]; SET2(Y[3], nonce[0]); \
Encrypt_##keysize(X, Y, ctx->rk, 8); \
} \
} \
} \
\
XOR_STORE(in, out, X[0], Y[0]); \
if(numbytes >= 64) \
XOR_STORE(in + 32, out + 32, X[1], Y[1]); \
if(numbytes >= 96) \
XOR_STORE(in + 64, out + 64, X[2], Y[2]); \
if(numbytes >= 128) \
XOR_STORE(in + 96, out + 96, X[3], Y[3]); \
\
return 0
static int speck_encrypt_xor (unsigned char *out, const unsigned char *in, u64 nonce[], speck_context_t *ctx, int numbytes) {
if(ctx->keysize == 256) {
Encrypt_Dispatcher(256);
} else {
Encrypt_Dispatcher(128);
}
}
static int internal_speck_ctr (unsigned char *out, const unsigned char *in, unsigned long long inlen,
const unsigned char *n, speck_context_t *ctx) {
int i;
u64 nonce[2];
unsigned char block[16];
u64 *const block64 = (u64 *)block;
if(!inlen)
return 0;
nonce[0] = ((u64 *)n)[0];
nonce[1] = ((u64 *)n)[1];
while(inlen >= 128) {
speck_encrypt_xor(out, in, nonce, ctx, 128);
in += 128; inlen -= 128; out += 128;
}
if(inlen >= 96) {
speck_encrypt_xor(out, in, nonce, ctx, 96);
in += 96; inlen -= 96; out += 96;
}
if(inlen >= 64) {
speck_encrypt_xor(out, in, nonce, ctx, 64);
in += 64; inlen -= 64; out += 64;
}
if(inlen >= 32) {
speck_encrypt_xor(out, in, nonce, ctx, 32);
in += 32; inlen -= 32; out += 32;
}
if(inlen >= 16) {
speck_encrypt_xor(block, in, nonce, ctx, 16);
((u64 *)out)[0] = block64[0] ^ ((u64 *)in)[0];
((u64 *)out)[1] = block64[1] ^ ((u64 *)in)[1];
in += 16; inlen -= 16; out += 16;
}
if(inlen > 0) {
speck_encrypt_xor(block, in, nonce, ctx, 16);
for(i = 0; i < inlen; i++)
out[i] = block[i] ^ in[i];
}
return 0;
}
static int speck_expand_key (speck_context_t *ctx, const unsigned char *k, int keysize) {
u64 K[4];
size_t i;
for(i = 0; i < (keysize >> 6); i++)
K[i] = ((u64 *)k)[i];
// 128 bit has only two keys A and B thus replacing both C and D with B then
if(keysize == 128) {
EK(K[0], K[1], K[1], K[1], ctx->rk, ctx->key);
} else {
EK(K[0], K[1], K[2], K[3], ctx->rk, ctx->key);
}
ctx->keysize = keysize;
return 0;
}
#else // plain C ----------------------------------------------------------------------------------------
#define ROR(x,r) (((x)>>(r))|((x)<<(64-(r))))
#define ROL(x,r) (((x)<<(r))|((x)>>(64-(r))))
#define R(x,y,k) (x=ROR(x,8), x+=y, x^=k, y=ROL(y,3), y^=x)
static int speck_encrypt (u64 *u, u64 *v, speck_context_t *ctx, int numrounds) {
u64 i, x = *u, y = *v;
for(i = 0; i < numrounds; i++)
R(x, y, ctx->key[i]);
*u = x; *v = y;
return 0;
}
static int internal_speck_ctr (unsigned char *out, const unsigned char *in, unsigned long long inlen,
const unsigned char *n, speck_context_t *ctx) {
u64 i, nonce[2], x, y, t;
unsigned char *block = malloc(16);
int numrounds = (ctx->keysize == 256)?34:32;
if(!inlen) {
free(block);
return 0;
}
nonce[0] = htole64( ((u64*)n)[0] );
nonce[1] = htole64( ((u64*)n)[1] );
t=0;
while(inlen >= 16) {
x = nonce[1]; y = nonce[0]; nonce[0]++;
speck_encrypt(&x, &y, ctx, numrounds);
((u64 *)out)[1+t] = htole64(x ^ ((u64 *)in)[1+t]);
((u64 *)out)[0+t] = htole64(y ^ ((u64 *)in)[0+t]);
t += 2;
inlen -= 16;
}
if(inlen > 0) {
x = nonce[1]; y = nonce[0];
speck_encrypt(&x, &y, ctx, numrounds);
((u64 *)block)[1] = htole64(x); ((u64 *)block)[0] = htole64(y);
for(i = 0; i < inlen; i++)
out[i + 8*t] = block[i] ^ in[i + 8*t];
}
free(block);
return 0;
}
static int speck_expand_key (speck_context_t *ctx, const unsigned char *k, int keysize) {
u64 K[4];
u64 i;
for(i = 0; i < (keysize >> 6); i++)
K[i] = htole64( ((u64 *)k)[i] );
for(i = 0; i < 33; i += 3) {
ctx->key[i ] = K[0];
R(K[1], K[0], i );
if(keysize == 256) {
ctx->key[i+1] = K[0];
R(K[2], K[0], i + 1);
ctx->key[i+2] = K[0];
R(K[3], K[0], i + 2);
} else {
// counter the i += 3 to make the loop go one by one in this case
// we can afford the unused 31 and 32
i -= 2;
}
}
ctx->key[33] = K[0];
ctx->keysize = keysize;
return 1;
}
#endif // AVX, SSE, NEON, plain C ------------------------------------------------------------------------
// this functions wraps the call to internal_speck_ctr functions which have slightly different
// signature -- ctx by value for SSE with SPECK_CTX_BYVAL defined in speck.h, by name otherwise
int speck_ctr (unsigned char *out, const unsigned char *in, unsigned long long inlen,
const unsigned char *n, speck_context_t *ctx) {
return internal_speck_ctr(out, in, inlen, n,
#if defined (SPECK_CTX_BYVAL)
*ctx);
#else
ctx);
#endif
}
// create context loaded with round keys ready for use, key size either 128 or 256 (bits)
int speck_init (speck_context_t **ctx, const unsigned char *k, int keysize) {
#if defined (SPECK_ALIGNED_CTX)
*ctx = (speck_context_t*)_mm_malloc(sizeof(speck_context_t), SPECK_ALIGNED_CTX);
#else
*ctx = (speck_context_t*)calloc(1, sizeof(speck_context_t));
#endif
if(!(*ctx)) {
return -1;
}
return speck_expand_key(*ctx, k, keysize);
}
int speck_deinit (speck_context_t *ctx) {
if(ctx) {
#if defined (SPECK_ALIGNED_CTX)
_mm_free(ctx);
#else
free(ctx);
#endif
}
return 0;
}
// ----------------------------------------------------------------------------------------------------------------
// cipher SPECK -- 96 bit block size -- 96 bit key size -- ECB mode
// follows endianess rules as used in official implementation guide and NOT as in original 2013 cipher presentation
// used for IV in header encryption, thus the in/postfix 'he_iv'
// for now: just plain C -- probably no need for AVX, SSE, NEON
// prerequisite: lower 16 bit reset
#define ROTL48(x,r) (((((x)<<(r)) | (x>>(48-(r)))) >> 16) << 16)
#define ROTR48(x,r) (((((x)>>(r)) | ((x)<<(48-(r)))) >> 16) << 16)
#define ER96(x,y,k) (x=ROTR48(x,8), x+=y, x^=k, y=ROTL48(y,3), y^=x)
#define DR96(x,y,k) (y^=x, y=ROTR48(y,3), x^=k, x-=y, x=ROTL48(x,8))
int speck_96_encrypt (unsigned char *inout, speck_context_t *ctx) {
u64 x, y;
int i;
x = htole64( *(u64*)&inout[0] ); x <<= 16;
y = htole64( *(u64*)&inout[4] ); y >>= 16; y <<= 16;
for(i = 0; i < 28; i++)
ER96(y, x, ctx->key[i]);
x >>= 16; x |= y << 32;
y >>= 32;
((u64*)inout)[0] = le64toh(x);
((u32*)inout)[2] = le32toh(y);
return 0;
}
int speck_96_decrypt (unsigned char *inout, speck_context_t *ctx) {
u64 x, y;
int i;
x = htole64( *(u64*)&inout[0] ); x <<= 16;
y = htole64( *(u64*)&inout[4] ); y >>= 16; y <<= 16;
for(i = 27; i >= 0; i--)
DR96(y, x, ctx->key[i]);
x >>= 16; x |= y << 32;
y >>= 32;
((u64*)inout)[0] = le64toh(x);
((u32*)inout)[2] = le32toh(y);
return 0;
}
int speck_96_expand_key (speck_context_t *ctx, const unsigned char *k) {
u64 A, B;
int i;
A = htole64( *(u64 *)&k[0] ); A <<= 16;
B = htole64( *(u64 *)&k[4] ); B >>= 16; B <<= 16;
for(i = 0; i < 28; i++) {
ctx->key[i] = A;
ER96(B, A, i << 16);
}
return 1;
}