Browse Source

readability code clean-up (#548)

* readability code clean-up

* readability code clean-up
pull/554/head
Logan oos Even 4 years ago
committed by GitHub
parent
commit
ab4f507012
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
  1. 26
      include/random_numbers.h
  2. 285
      src/random_numbers.c

26
include/random_numbers.h

@ -23,34 +23,36 @@
#include <stdint.h> #include <stdint.h>
#include <stddef.h> #include <stddef.h>
#include <time.h> // time, clock #include <time.h> /* time, clock */
#include "n2n.h" /* traceEvent */
#include "n2n.h" // traceEvent
// syscall and inquiring random number from hardware generators might fail, so we will retry // syscall and inquiring random number from hardware generators might fail, so we will retry
#define RND_RETRIES 1000 #define RND_RETRIES 1000
#if defined (__linux__) #if defined (__linux__)
#include <sys/syscall.h> // syscall, SYS_getrandom #include <sys/syscall.h> /* syscall, SYS_getrandom */
#ifdef SYS_getrandom #ifdef SYS_getrandom
#define GRND_NONBLOCK 1 #define GRND_NONBLOCK 1
#include <errno.h> // errno, EAGAIN #include <errno.h> /* errno, EAGAIN */
#endif #endif
#endif #endif
#if defined (__RDRND__) || defined (__RDSEED__) #if defined (__RDRND__) || defined (__RDSEED__)
#include <immintrin.h> // _rdrand64_step, rdseed4_step #include <immintrin.h> /* _rdrand64_step, rdseed4_step */
#endif #endif
/* The WIN32 code is still untested and thus commented, also see random_numbers.c // the WIN32 code is still untested and thus commented, also see random_numbers.c
#if defined (WIN32) /*
#include <Wincrypt.h> // HCTYPTPROV, Crypt*-functions #if defined (WIN32)
#endif #include <Wincrypt.h> // HCTYPTPROV, Crypt*-functions
#endif
*/ */
typedef struct rn_generator_state_t { typedef struct rn_generator_state_t {
uint64_t a, b; uint64_t a, b;
} rn_generator_state_t; } rn_generator_state_t;
typedef struct splitmix64_state_t { typedef struct splitmix64_state_t {
@ -60,9 +62,9 @@ typedef struct splitmix64_state_t {
int n2n_srand (uint64_t seed); int n2n_srand (uint64_t seed);
uint64_t n2n_rand (); uint64_t n2n_rand (void);
uint64_t n2n_seed (); uint64_t n2n_seed (void);
uint32_t n2n_rand_sqr (uint32_t max_n); uint32_t n2n_rand_sqr (uint32_t max_n);

285
src/random_numbers.c

@ -20,211 +20,226 @@
#include "random_numbers.h" #include "random_numbers.h"
/* The following code offers an alterate pseudo random number generator // the following code offers an alterate pseudo random number generator
namely XORSHIFT128+ to use instead of C's rand(). Its performance is // namely XORSHIFT128+ to use instead of C's rand()
on par with C's rand(). // its performance is on par with C's rand()
*/
/* The state must be seeded in a way that it is not all zero, choose some // the state must be seeded in a way that it is not all zero, choose some
arbitrary defaults (in this case: taken from splitmix64) */ // arbitrary defaults (in this case: taken from splitmix64)
static rn_generator_state_t rn_current_state = { static rn_generator_state_t rn_current_state = {
.a = 0x9E3779B97F4A7C15, .a = 0x9E3779B97F4A7C15,
.b = 0xBF58476D1CE4E5B9 }; .b = 0xBF58476D1CE4E5B9
};
/* used for mixing the initializing seed */ // used for mixing the initializing seed
static uint64_t splitmix64 (splitmix64_state_t *state) { static uint64_t splitmix64 (splitmix64_state_t *state) {
uint64_t result = state->s; uint64_t result = state->s;
state->s = result + 0x9E3779B97F4A7C15; state->s = result + 0x9E3779B97F4A7C15;
result = (result ^ (result >> 30)) * 0xBF58476D1CE4E5B9; result = (result ^ (result >> 30)) * 0xBF58476D1CE4E5B9;
result = (result ^ (result >> 27)) * 0x94D049BB133111EB; result = (result ^ (result >> 27)) * 0x94D049BB133111EB;
return result ^ (result >> 31); return result ^ (result >> 31);
} }
int n2n_srand (uint64_t seed) { int n2n_srand (uint64_t seed) {
uint8_t i; uint8_t i;
splitmix64_state_t smstate = {seed}; splitmix64_state_t smstate = { seed };
rn_current_state.a = 0; rn_current_state.a = 0;
rn_current_state.b = 0; rn_current_state.b = 0;
rn_current_state.a = splitmix64 (&smstate); rn_current_state.a = splitmix64 (&smstate);
rn_current_state.b = splitmix64 (&smstate); rn_current_state.b = splitmix64 (&smstate);
/* the following lines could be deleted as soon as it is formally prooved that // the following lines could be deleted as soon as it is formally prooved that
there is no seed leading to (a == b == 0). Until then, just to be safe: */ // there is no seed leading to (a == b == 0). until then, just to be safe:
if ( (rn_current_state.a == 0) && (rn_current_state.b == 0) ) { if((rn_current_state.a == 0) && (rn_current_state.b == 0)) {
rn_current_state.a = 0x9E3779B97F4A7C15; rn_current_state.a = 0x9E3779B97F4A7C15;
rn_current_state.b = 0xBF58476D1CE4E5B9; rn_current_state.b = 0xBF58476D1CE4E5B9;
} }
// stabilize in unlikely case of weak state with only a few bits set // stabilize in unlikely case of weak state with only a few bits set
for(i = 0; i < 32; i++) for(i = 0; i < 32; i++)
n2n_rand(); n2n_rand();
return 0; return 0;
} }
/* The following code of xorshift128p was taken from // the following code of xorshift128p was taken from
https://en.wikipedia.org/wiki/Xorshift as of July, 2019 // https://en.wikipedia.org/wiki/Xorshift as of July, 2019
and thus is considered public domain. */ // and thus is considered public domain
uint64_t n2n_rand () { uint64_t n2n_rand (void) {
uint64_t t = rn_current_state.a; uint64_t t = rn_current_state.a;
uint64_t const s = rn_current_state.b; uint64_t const s = rn_current_state.b;
rn_current_state.a = s; rn_current_state.a = s;
t ^= t << 23; t ^= t << 23;
t ^= t >> 17; t ^= t >> 17;
t ^= s ^ (s >> 26); t ^= s ^ (s >> 26);
rn_current_state.b = t; rn_current_state.b = t;
return t + s; return t + s;
} }
/* The following code tries to gather some entropy from several sources // the following code tries to gather some entropy from several sources
for use as seed. Note, that this code does not set the random generator // for use as seed. Note, that this code does not set the random generator
state yet, a call to n2n_srand ( n2n_seed() ) would do. */ // state yet, a call to n2n_srand (n2n_seed()) would do
uint64_t n2n_seed (void) { uint64_t n2n_seed (void) {
uint64_t seed = 0; uint64_t seed = 0; /* this could even go uninitialized */
uint64_t ret = 0; uint64_t ret = 0; /* this could even go uninitialized */
size_t i; size_t i;
#ifdef SYS_getrandom #ifdef SYS_getrandom
int rc = -1; int rc = -1;
for(i = 0; (i < RND_RETRIES) && (rc != sizeof(seed)); i++) { for(i = 0; (i < RND_RETRIES) && (rc != sizeof(seed)); i++) {
rc = syscall (SYS_getrandom, &seed, sizeof(seed), GRND_NONBLOCK); rc = syscall (SYS_getrandom, &seed, sizeof(seed), GRND_NONBLOCK);
// if successful, rc should contain the requested number of random bytes // if successful, rc should contain the requested number of random bytes
if(rc != sizeof(seed)) { if(rc != sizeof(seed)) {
if (errno != EAGAIN) { if (errno != EAGAIN) {
traceEvent(TRACE_ERROR, "n2n_seed faced error errno=%u from getrandom syscall.", errno); traceEvent(TRACE_ERROR, "n2n_seed faced error errno=%u from getrandom syscall.", errno);
break; break;
} }
}
}
// if we still see an EAGAIN error here, we must have run out of retries
if(errno == EAGAIN) {
traceEvent(TRACE_ERROR, "n2n_seed saw getrandom syscall indicate not being able to provide enough entropy yet.");
} }
}
// if we still see an EAGAIN error here, we must have run out of retries
if(errno == EAGAIN) {
traceEvent(TRACE_ERROR, "n2n_seed saw getrandom syscall indicate not being able to provide enough entropy yet.");
}
#endif #endif
// as we want randomness, it does no harm to add up even uninitialized values or // as we want randomness, it does no harm to add up even uninitialized values or
// erroneously arbitrary values returned from the syscall for the first time // erroneously arbitrary values returned from the syscall for the first time
ret += seed; ret += seed;
// __RDRND__ is set only if architecturual feature is set, e.g. compile with -march=native // __RDRND__ is set only if architecturual feature is set, e.g. compiled with -march=native
#ifdef __RDRND__ #ifdef __RDRND__
for(i = 0; i < RND_RETRIES; i++) { for(i = 0; i < RND_RETRIES; i++) {
if(_rdrand64_step ((unsigned long long*)&seed)) { if(_rdrand64_step((unsigned long long*)&seed)) {
// success! // success!
// from now on, we keep this inside the loop because in case of failure // from now on, we keep this inside the loop because in case of failure
// and with unchanged values, we do not want to double the previous value // and with unchanged values, we do not want to double the previous value
ret += seed; ret += seed;
break; break;
}
// continue loop to try again otherwise
}
if(i == RND_RETRIES) {
traceEvent(TRACE_ERROR, "n2n_seed was not able to get a hardware generated random number from RDRND.");
} }
// continue loop to try again otherwise
}
if(i == RND_RETRIES){
traceEvent(TRACE_ERROR, "n2n_seed was not able to get a hardware generated random number from RDRND.");
}
#endif #endif
// __RDSEED__ ist set only if architecturual feature is set, e.g. compile with -march=native // __RDSEED__ ist set only if architecturual feature is set, e.g. compile with -march=native
#ifdef __RDSEED__ #ifdef __RDSEED__
for(i = 0; i < RND_RETRIES; i++) { for(i = 0; i < RND_RETRIES; i++) {
if(_rdseed64_step((unsigned long long*)&seed)) { if(_rdseed64_step((unsigned long long*)&seed)) {
// success! // success!
ret += seed; ret += seed;
break; break;
}
// continue loop to try again otherwise
}
if(i == RND_RETRIES) {
traceEvent(TRACE_ERROR, "n2n_seed was not able to get a hardware generated random number from RDSEED.");
} }
// continue loop to try again otherwise
}
if(i == RND_RETRIES){
traceEvent(TRACE_ERROR, "n2n_seed was not able to get a hardware generated random number from RDSEED.");
}
#endif #endif
/* The WIN32 code is still untested and thus commented // the following WIN32 code is still untested and thus commented
#ifdef WIN32 /*
HCRYPTPROV crypto_provider; #ifdef WIN32
CryptAcquireContext (&crypto_provider, NULL, (LPCWSTR)L"Microsoft Base Cryptographic Provider v1.0", HCRYPTPROV crypto_provider;
PROV_RSA_FULL, CRYPT_VERIFYCONTEXT); CryptAcquireContext (&crypto_provider, NULL, (LPCWSTR)L"Microsoft Base Cryptographic Provider v1.0",
CryptGenRandom (crypto_provider, 8, &seed); PROV_RSA_FULL, CRYPT_VERIFYCONTEXT);
CryptReleaseContext (crypto_provider, 0); CryptGenRandom (crypto_provider, 8, &seed);
ret += seed; CryptReleaseContext (crypto_provider, 0);
#endif */ ret += seed;
#endif
*/
seed = time(NULL); // UTC in seconds seed = time(NULL); /* UTC in seconds */
ret += seed; ret += seed;
seed = clock() * 18444244737; // clock() = ticks since program start seed = clock(); /* ticks since program start */
ret += seed; seed *= 18444244737;
ret += seed;
return ret; return ret;
} }
/* an integer squrare root approximation // an integer squrare root approximation
* from https://stackoverflow.com/a/1100591. */ // from https://stackoverflow.com/a/1100591
static int ftbl [33] = {0,1,1,2,2,4,5,8,11,16,22,32,45,64,90,128,181,256,362,512,724,1024,1448,2048,2896,4096,5792,8192,11585,16384,23170,32768,46340}; static int ftbl[33] = {
static int ftbl2[32] = { 32768,33276,33776,34269,34755,35235,35708,36174,36635,37090,37540,37984,38423,38858,39287,39712,40132,40548,40960,41367,41771,42170,42566,42959,43347,43733,44115,44493,44869,45241,45611,45977}; 0, 1, 1, 2, 2, 4, 5, 8, 11, 16, 22, 32, 45, 64, 90,
128, 181 ,256 ,362, 512, 724, 1024, 1448, 2048, 2896,
4096, 5792, 8192, 11585, 16384, 23170, 32768, 46340 };
static int ftbl2[32] = {
32768, 33276, 33776, 34269, 34755, 35235, 35708, 36174,
36635, 37090, 37540, 37984, 38423, 38858, 39287, 39712,
40132, 40548, 40960, 41367, 41771, 42170, 42566, 42959,
43347, 43733, 44115, 44493, 44869, 45241, 45611, 45977 };
static int i_sqrt(int val) {
int cnt = 0; static int i_sqrt (int val) {
int t = val;
while(t) { int cnt = 0;
cnt++; int t = val;
t>>=1;
} while(t) {
cnt++;
t>>=1;
}
if(6 >= cnt) if(6 >= cnt)
t = (val << (6-cnt)); t = (val << (6-cnt));
else else
t = (val >> (cnt-6)); t = (val >> (cnt-6));
return (ftbl[cnt] * ftbl2[t & 31]) >> 15; return (ftbl[cnt] * ftbl2[t & 31]) >> 15;
} }
static int32_t int_sqrt(int val) { static int32_t int_sqrt (int val) {
int ret; int ret;
ret = i_sqrt (val); ret = i_sqrt (val);
ret += i_sqrt (val - ret * ret) / 16; ret += i_sqrt (val - ret * ret) / 16;
return ret; return ret;
} }
// returns a random number from [0, max_n] with higher probability towards the borders // returns a random number from [0, max_n] with higher probability towards the borders
uint32_t n2n_rand_sqr (uint32_t max_n) { uint32_t n2n_rand_sqr (uint32_t max_n) {
uint32_t raw_max = 0; uint32_t raw_max = 0;
uint32_t raw_rnd = 0; uint32_t raw_rnd = 0;
int32_t ret = 0; int32_t ret = 0;
raw_max = (max_n+2) * (max_n+2); raw_max = (max_n+2) * (max_n+2);
raw_rnd = n2n_rand() % (raw_max); raw_rnd = n2n_rand() % (raw_max);
ret = int_sqrt(raw_rnd) / 2; ret = int_sqrt(raw_rnd) / 2;
ret = (raw_rnd & 1) ? ret : -ret; ret = (raw_rnd & 1) ? ret : -ret;
ret = max_n / 2 + ret; ret = max_n / 2 + ret;
if (ret < 0) ret = 0; if(ret < 0)
if (ret > max_n) ret = max_n; ret = 0;
if (ret > max_n)
ret = max_n;
return ret; return ret;
} }

Loading…
Cancel
Save