Browse Source

hardware-accelerated header encryption (#565)

* hardware-accelerated header encryption

* hardware-accelerated header encryption

* hardware-accelerated header encryption
pull/572/head
Logan oos Even 4 years ago
committed by GitHub
parent
commit
9bbf7d95f6
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
  1. 33
      include/speck.h
  2. 14
      src/header_encryption.c
  3. 503
      src/speck.c
  4. 4
      src/transform_speck.c

33
include/speck.h

@ -17,7 +17,7 @@
*/ */
// cipher SPECK -- 128 bit block size -- 256 bit key size -- CTR mode // cipher SPECK -- 128 bit block size -- 128 and 256 bit key size -- CTR mode
// taken from (and modified: removed pure crypto-stream generation and seperated key expansion) // taken from (and modified: removed pure crypto-stream generation and seperated key expansion)
// https://github.com/nsacyber/simon-speck-supercop/blob/master/crypto_stream/speck128256ctr/ // https://github.com/nsacyber/simon-speck-supercop/blob/master/crypto_stream/speck128256ctr/
@ -51,6 +51,7 @@
typedef struct { typedef struct {
u256 rk[34]; u256 rk[34];
u64 key[34]; u64 key[34];
u32 keysize;
} speck_context_t; } speck_context_t;
@ -67,6 +68,7 @@ typedef struct {
typedef struct { typedef struct {
u128 rk[34]; u128 rk[34];
u64 key[34]; u64 key[34];
u32 keysize;
} speck_context_t; } speck_context_t;
@ -78,8 +80,9 @@ typedef struct {
#define u128 uint64x2_t #define u128 uint64x2_t
typedef struct { typedef struct {
u128 rk[34]; u128 rk[34];
u64 key[34]; u64 key[34];
u32 keysize;
} speck_context_t; } speck_context_t;
@ -88,6 +91,7 @@ typedef struct {
typedef struct { typedef struct {
u64 key[34]; u64 key[34];
u32 keysize;
} speck_context_t; } speck_context_t;
@ -98,39 +102,26 @@ int speck_ctr (unsigned char *out, const unsigned char *in, unsigned long long i
const unsigned char *n, const unsigned char *n,
speck_context_t *ctx); speck_context_t *ctx);
int speck_init (const unsigned char *k, speck_context_t **ctx); int speck_init (speck_context_t **ctx, const unsigned char *k, int keysize);
int speck_deinit (speck_context_t *ctx); int speck_deinit (speck_context_t *ctx);
// ---------------------------------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------------------------------
// cipher SPECK -- 128 bit block size -- 128 bit key size -- CTR mode
// used for header encryption, thus the postfix '_he'
// for now: just plain C -- AVX, SSE, NEON do not make sense for short header
int speck_he (unsigned char *out, const unsigned char *in, unsigned long long inlen,
const unsigned char *n, speck_context_t *ctx);
int speck_expand_key_he (const unsigned char *k, speck_context_t *ctx);
// ---------------------------------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------------------------------
// cipher SPECK -- 96 bit block size -- 96 bit key size -- ECB mode // cipher SPECK -- 96 bit block size -- 96 bit key size -- ECB mode
// follows endianess rules as used in official implementation guide and NOT as in original 2013 cipher presentation // follows endianess rules as used in official implementation guide and NOT as in original 2013 cipher presentation
// used for IV in header encryption, thus the in/postfix 'he_iv' // used for IV in header encryption
// for now: just plain C -- probably no need for AVX, SSE, NEON // for now: just plain C -- probably no need for AVX, SSE, NEON
int speck_he_iv_encrypt (unsigned char *inout, speck_context_t *ctx); int speck_96_encrypt (unsigned char *inout, speck_context_t *ctx);
int speck_he_iv_decrypt (unsigned char *inout, speck_context_t *ctx); int speck_96_decrypt (unsigned char *inout, speck_context_t *ctx);
int speck_expand_key_he_iv (const unsigned char *k, speck_context_t *ctx); int speck_96_expand_key (speck_context_t *ctx, const unsigned char *k);
#endif // SPECK_H #endif // SPECK_H

14
src/header_encryption.c

@ -40,15 +40,15 @@ uint32_t packet_header_decrypt (uint8_t packet[], uint16_t packet_len,
uint32_t test_magic; uint32_t test_magic;
// check for magic bytes and reasonable value in header len field // check for magic bytes and reasonable value in header len field
// so, as a first step, decrypt 4 bytes only starting at byte 12 // so, as a first step, decrypt 4 bytes only starting at byte 12
speck_he((uint8_t*)&test_magic, &packet[12], 4, iv, (speck_context_t*)ctx); speck_ctr((uint8_t*)&test_magic, &packet[12], 4, iv, (speck_context_t*)ctx);
test_magic = be32toh(test_magic); test_magic = be32toh(test_magic);
if((((test_magic >> 8) << 8) == magic) /* check the thre uppermost bytes */ if((((test_magic >> 8) << 8) == magic) /* check the thre uppermost bytes */
&& (((uint8_t)test_magic) <= packet_len)) { /* lowest 8 bit of test_magic are header_len */ && (((uint8_t)test_magic) <= packet_len)) { /* lowest 8 bit of test_magic are header_len */
// decrypt the complete header // decrypt the complete header
speck_he(&packet[12], &packet[12], (uint8_t)(test_magic) - 12, iv, (speck_context_t*)ctx); speck_ctr(&packet[12], &packet[12], (uint8_t)(test_magic) - 12, iv, (speck_context_t*)ctx);
// extract time stamp (first 64 bit) and checksum (last 16 bit) blended in IV // extract time stamp (first 64 bit) and checksum (last 16 bit) blended in IV
speck_he_iv_decrypt(iv, (speck_context_t*)ctx_iv); speck_96_decrypt(iv, (speck_context_t*)ctx_iv);
*checksum = be16toh(((uint16_t*)iv)[5]); *checksum = be16toh(((uint16_t*)iv)[5]);
*stamp = be64toh(((uint64_t*)iv)[0]); *stamp = be64toh(((uint64_t*)iv)[0]);
@ -88,12 +88,12 @@ int32_t packet_header_encrypt (uint8_t packet[], uint8_t header_len, he_context_
iv32[3] = htobe32(magic); iv32[3] = htobe32(magic);
// blend checksum into 96-bit IV // blend checksum into 96-bit IV
speck_he_iv_encrypt(iv, (speck_context_t*)ctx_iv); speck_96_encrypt(iv, (speck_context_t*)ctx_iv);
memcpy(packet, iv, 16); memcpy(packet, iv, 16);
packet[15] = header_len; packet[15] = header_len;
speck_he(&packet[12], &packet[12], header_len - 12, iv, (speck_context_t*)ctx); speck_ctr(&packet[12], &packet[12], header_len - 12, iv, (speck_context_t*)ctx);
return 0; return 0;
} }
@ -106,11 +106,11 @@ void packet_header_setup_key (const char *community_name, he_context_t **ctx,
pearson_hash_128(key, (uint8_t*)community_name, N2N_COMMUNITY_SIZE); pearson_hash_128(key, (uint8_t*)community_name, N2N_COMMUNITY_SIZE);
*ctx = (he_context_t*)calloc(1, sizeof (speck_context_t)); *ctx = (he_context_t*)calloc(1, sizeof (speck_context_t));
speck_expand_key_he(key, (speck_context_t*)*ctx); speck_init((speck_context_t**)ctx, key, 128);
// hash again and use last 96 bit (skipping 4 bytes) as key for IV encryption // hash again and use last 96 bit (skipping 4 bytes) as key for IV encryption
// REMOVE as soon as checksum and replay protection get their own fields // REMOVE as soon as checksum and replay protection get their own fields
pearson_hash_128(key, key, sizeof (key)); pearson_hash_128(key, key, sizeof (key));
*ctx_iv = (he_context_t*)calloc(1, sizeof (speck_context_t)); *ctx_iv = (he_context_t*)calloc(1, sizeof (speck_context_t));
speck_expand_key_he_iv(&key[4], (speck_context_t*)*ctx_iv); speck_96_expand_key((speck_context_t*)*ctx_iv, &key[4]);
} }

503
src/speck.c

@ -17,7 +17,7 @@
*/ */
// cipher SPECK -- 128 bit block size -- 256 bit key size -- CTR mode // cipher SPECK -- 128 bit block size -- 128 and 256 bit key size -- CTR mode
// taken from (and modified: removed pure crypto-stream generation and seperated key expansion) // taken from (and modified: removed pure crypto-stream generation and seperated key expansion)
// https://github.com/nsacyber/simon-speck-supercop/blob/master/crypto_stream/speck128256ctr/ // https://github.com/nsacyber/simon-speck-supercop/blob/master/crypto_stream/speck128256ctr/
@ -61,15 +61,11 @@
#define ROL(X,r) (XOR(SL(X,r),SR(X,(64-r)))) #define ROL(X,r) (XOR(SL(X,r),SR(X,(64-r))))
#define ROR(X,r) (XOR(SR(X,r),SL(X,(64-r)))) #define ROR(X,r) (XOR(SR(X,r),SL(X,(64-r))))
#define numrounds 34
#define numkeywords 4
#define R(X,Y,k) (X=XOR(ADD(ROR8(X),Y),k), Y=XOR(ROL(Y,3),X)) #define R(X,Y,k) (X=XOR(ADD(ROR8(X),Y),k), Y=XOR(ROL(Y,3),X))
#define Rx4(X,Y,k) (R(X[0],Y[0],k)) #define Rx4(X,Y,k) (R(X[0],Y[0],k))
#define Rx8(X,Y,k) (R(X[0],Y[0],k), R(X[1],Y[1],k)) #define Rx8(X,Y,k) (R(X[0],Y[0],k), R(X[1],Y[1],k))
#define Rx12(X,Y,k) (R(X[0],Y[0],k), R(X[1],Y[1],k), R(X[2],Y[2],k)) #define Rx12(X,Y,k) (R(X[0],Y[0],k), R(X[1],Y[1],k), R(X[2],Y[2],k))
#define Rx16(X,Y,k) (X[0]=ROR8(X[0]), X[0]=ADD(X[0],Y[0]), X[1]=ROR8(X[1]), X[1]=ADD(X[1],Y[1]), \ #define Rx16(X,Y,k) (X[0]=ROR8(X[0]), X[0]=ADD(X[0],Y[0]), X[1]=ROR8(X[1]), X[1]=ADD(X[1],Y[1]), \
X[2]=ROR8(X[2]), X[2]=ADD(X[2],Y[2]), X[3]=ROR8(X[3]), X[3]=ADD(X[3],Y[3]), \ X[2]=ROR8(X[2]), X[2]=ADD(X[2],Y[2]), X[3]=ROR8(X[3]), X[3]=ADD(X[3],Y[3]), \
X[0]=XOR(X[0],k), X[1]=XOR(X[1],k), X[2]=XOR(X[2],k), X[3]=XOR(X[3],k), \ X[0]=XOR(X[0],k), X[1]=XOR(X[1],k), X[2]=XOR(X[2],k), X[3]=XOR(X[3],k), \
@ -79,18 +75,19 @@
Y[0]=XOR(Y[0],Z[0]), Y[1]=XOR(Y[1],Z[1]), Y[2]=XOR(Y[2],Z[2]), Y[3]=XOR(Y[3],Z[3]), \ Y[0]=XOR(Y[0],Z[0]), Y[1]=XOR(Y[1],Z[1]), Y[2]=XOR(Y[2],Z[2]), Y[3]=XOR(Y[3],Z[3]), \
Y[0]=XOR(X[0],Y[0]), Y[1]=XOR(X[1],Y[1]), Y[2]=XOR(X[2],Y[2]), Y[3]=XOR(X[3],Y[3])) Y[0]=XOR(X[0],Y[0]), Y[1]=XOR(X[1],Y[1]), Y[2]=XOR(X[2],Y[2]), Y[3]=XOR(X[3],Y[3]))
#define Rx2(x,y,k) (x[0]=RCS(x[0],8), x[1]=RCS(x[1],8), x[0]+=y[0], x[1]+=y[1], \ #define Rx1(x,y,k) (x[0]=RCS(x[0],8), x[0]+=y[0], x[0]^=k, y[0]=LCS(y[0],3), y[0]^=x[0])
x[0]^=k, x[1]^=k, y[0]=LCS(y[0],3), y[1]=LCS(y[1],3), y[0]^=x[0], y[1]^=x[1]) #define Rx1b(x,y,k) (x=RCS(x,8), x+=y, x^=k, y=LCS(y,3), y^=x)
#define Rx2(x,y,k) (x[0]=RCS(x[0],8), x[1]=RCS(x[1],8), x[0]+=y[0], x[1]+=y[1], \
x[0]^=k, x[1]^=k, y[0]=LCS(y[0],3), y[1]=LCS(y[1],3), y[0]^=x[0], y[1]^=x[1])
#define Rx1(x,y,k) (x[0]=RCS(x[0],8), x[0]+=y[0], x[0]^=k, y[0]=LCS(y[0],3), y[0]^=x[0])
#define Rx1b(x,y,k) (x=RCS(x,8), x+=y, x^=k, y=LCS(y,3), y^=x) #define Encrypt_128(X,Y,k,n) (Rx##n(X,Y,k[0]), Rx##n(X,Y,k[1]), Rx##n(X,Y,k[2]), Rx##n(X,Y,k[3]), Rx##n(X,Y,k[4]), Rx##n(X,Y,k[5]), Rx##n(X,Y,k[6]), Rx##n(X,Y,k[7]), \
Rx##n(X,Y,k[8]), Rx##n(X,Y,k[9]), Rx##n(X,Y,k[10]), Rx##n(X,Y,k[11]), Rx##n(X,Y,k[12]), Rx##n(X,Y,k[13]), Rx##n(X,Y,k[14]), Rx##n(X,Y,k[15]), \
Rx##n(X,Y,k[16]), Rx##n(X,Y,k[17]), Rx##n(X,Y,k[18]), Rx##n(X,Y,k[19]), Rx##n(X,Y,k[20]), Rx##n(X,Y,k[21]), Rx##n(X,Y,k[22]), Rx##n(X,Y,k[23]), \
Rx##n(X,Y,k[24]), Rx##n(X,Y,k[25]), Rx##n(X,Y,k[26]), Rx##n(X,Y,k[27]), Rx##n(X,Y,k[28]), Rx##n(X,Y,k[29]), Rx##n(X,Y,k[30]), Rx##n(X,Y,k[31]))
#define Encrypt(X,Y,k,n) (Rx##n(X,Y,k[0]), Rx##n(X,Y,k[1]), Rx##n(X,Y,k[2]), Rx##n(X,Y,k[3]), Rx##n(X,Y,k[4]), Rx##n(X,Y,k[5]), Rx##n(X,Y,k[6]), Rx##n(X,Y,k[7]), \ #define Encrypt_256(X,Y,k,n) (Encrypt_128(X,Y,k,n), \
Rx##n(X,Y,k[8]), Rx##n(X,Y,k[9]), Rx##n(X,Y,k[10]), Rx##n(X,Y,k[11]), Rx##n(X,Y,k[12]), Rx##n(X,Y,k[13]), Rx##n(X,Y,k[14]), Rx##n(X,Y,k[15]), \ Rx##n(X,Y,k[32]), Rx##n(X,Y,k[33]))
Rx##n(X,Y,k[16]), Rx##n(X,Y,k[17]), Rx##n(X,Y,k[18]), Rx##n(X,Y,k[19]), Rx##n(X,Y,k[20]), Rx##n(X,Y,k[21]), Rx##n(X,Y,k[22]), Rx##n(X,Y,k[23]), \
Rx##n(X,Y,k[24]), Rx##n(X,Y,k[25]), Rx##n(X,Y,k[26]), Rx##n(X,Y,k[27]), Rx##n(X,Y,k[28]), Rx##n(X,Y,k[29]), Rx##n(X,Y,k[30]), Rx##n(X,Y,k[31]), \
Rx##n(X,Y,k[32]), Rx##n(X,Y,k[33]))
#define RK(X,Y,k,key,i) (SET1(k[i],Y), key[i]=Y, X=RCS(X,8), X+=Y, X^=i, Y=LCS(Y,3), Y^=X) #define RK(X,Y,k,key,i) (SET1(k[i],Y), key[i]=Y, X=RCS(X,8), X+=Y, X^=i, Y=LCS(Y,3), Y^=X)
@ -100,61 +97,68 @@
RK(B,A,k,key,21), RK(C,A,k,key,22), RK(D,A,k,key,23), RK(B,A,k,key,24), RK(C,A,k,key,25), RK(D,A,k,key,26), RK(B,A,k,key,27), \ RK(B,A,k,key,21), RK(C,A,k,key,22), RK(D,A,k,key,23), RK(B,A,k,key,24), RK(C,A,k,key,25), RK(D,A,k,key,26), RK(B,A,k,key,27), \
RK(C,A,k,key,28), RK(D,A,k,key,29), RK(B,A,k,key,30), RK(C,A,k,key,31), RK(D,A,k,key,32), RK(B,A,k,key,33)) RK(C,A,k,key,28), RK(D,A,k,key,29), RK(B,A,k,key,30), RK(C,A,k,key,31), RK(D,A,k,key,32), RK(B,A,k,key,33))
#define Encrypt_Dispatcher(keysize) \
u64 x[2], y[2]; \
u256 X[4], Y[4], Z[4]; \
\
if(numbytes == 16) { \
x[0] = nonce[1]; y[0] = nonce[0]; nonce[0]++; \
Encrypt_##keysize(x, y, ctx->key, 1); \
((u64 *)out)[1] = x[0]; ((u64 *)out)[0] = y[0]; \
return 0; \
} \
\
if(numbytes == 32) { \
x[0] = nonce[1]; y[0] = nonce[0]; nonce[0]++; \
x[1] = nonce[1]; y[1] = nonce[0]; nonce[0]++; \
Encrypt_##keysize(x , y, ctx->key, 2); \
((u64 *)out)[1] = x[0] ^ ((u64 *)in)[1]; ((u64 *)out)[0] = y[0] ^ ((u64 *)in)[0]; \
((u64 *)out)[3] = x[1] ^ ((u64 *)in)[3]; ((u64 *)out)[2] = y[1] ^ ((u64 *)in)[2]; \
return 0; \
} \
\
SET1(X[0], nonce[1]); SET4(Y[0], nonce[0]); \
\
if(numbytes == 64) \
Encrypt_##keysize(X, Y, ctx->rk, 4); \
else { \
X[1] = X[0]; \
Y[1] = ADD(Y[0], _four); \
if(numbytes == 128) \
Encrypt_##keysize(X, Y, ctx->rk, 8); \
else { \
X[2] = X[0]; \
Y[2] = ADD(Y[1], _four); \
if(numbytes == 192) \
Encrypt_##keysize(X, Y, ctx->rk, 12); \
else { \
X[3] = X[0]; \
Y[3] = ADD(Y[2], _four); \
Encrypt_##keysize(X, Y, ctx->rk, 16); \
} \
} \
} \
\
nonce[0] += (numbytes >> 4); \
\
XOR_STORE(in, out, X[0], Y[0]); \
if (numbytes >= 128) \
XOR_STORE(in + 64, out + 64, X[1], Y[1]); \
if(numbytes >= 192) \
XOR_STORE(in + 128, out + 128, X[2], Y[2]); \
if(numbytes >= 256) \
XOR_STORE(in + 192, out + 192, X[3], Y[3]); \
\
return 0
static int speck_encrypt_xor(unsigned char *out, const unsigned char *in, u64 nonce[], speck_context_t *ctx, int numbytes) {
u64 x[2], y[2];
u256 X[4], Y[4], Z[4];
if(numbytes == 16) { static int speck_encrypt_xor(unsigned char *out, const unsigned char *in, u64 nonce[], speck_context_t *ctx, int numbytes) {
x[0] = nonce[1]; y[0] = nonce[0]; nonce[0]++;
Encrypt(x, y, ctx->key, 1);
((u64 *)out)[1] = x[0]; ((u64 *)out)[0] = y[0];
return 0;
}
if(numbytes == 32) {
x[0] = nonce[1]; y[0] = nonce[0]; nonce[0]++;
x[1] = nonce[1]; y[1] = nonce[0]; nonce[0]++;
Encrypt(x , y, ctx->key, 2);
((u64 *)out)[1] = x[0] ^ ((u64 *)in)[1]; ((u64 *)out)[0] = y[0] ^ ((u64 *)in)[0];
((u64 *)out)[3] = x[1] ^ ((u64 *)in)[3]; ((u64 *)out)[2] = y[1] ^ ((u64 *)in)[2];
return 0;
}
SET1(X[0], nonce[1]); SET4(Y[0], nonce[0]); if(ctx->keysize == 256) {
Encrypt_Dispatcher(256);
if(numbytes == 64) } else {
Encrypt(X, Y, ctx->rk, 4); Encrypt_Dispatcher(128);
else {
X[1] = X[0];
Y[1] = ADD(Y[0], _four);
if(numbytes == 128)
Encrypt(X, Y, ctx->rk, 8);
else {
X[2] = X[0];
Y[2] = ADD(Y[1], _four);
if(numbytes == 192)
Encrypt(X, Y, ctx->rk, 12);
else {
X[3] = X[0];
Y[3] = ADD(Y[2], _four);
Encrypt(X, Y, ctx->rk, 16);
}
}
} }
nonce[0] += (numbytes >> 4);
XOR_STORE(in, out, X[0], Y[0]);
if (numbytes >= 128)
XOR_STORE(in + 64, out + 64, X[1], Y[1]);
if(numbytes >= 192)
XOR_STORE(in + 128, out + 128, X[2], Y[2]);
if(numbytes >= 256)
XOR_STORE(in + 192, out + 192, X[3], Y[3]);
return 0;
} }
@ -205,7 +209,7 @@ static int internal_speck_ctr(unsigned char *out, const unsigned char *in, unsig
} }
if(inlen > 0) { if(inlen > 0) {
speck_encrypt_xor (block, in, nonce, ctx, 16); speck_encrypt_xor(block, in, nonce, ctx, 16);
for(i = 0; i < inlen; i++) for(i = 0; i < inlen; i++)
out[i] = block[i] ^ in[i]; out[i] = block[i] ^ in[i];
} }
@ -214,15 +218,22 @@ static int internal_speck_ctr(unsigned char *out, const unsigned char *in, unsig
} }
static int speck_expand_key (const unsigned char *k, speck_context_t *ctx) { static int speck_expand_key (speck_context_t *ctx, const unsigned char *k, int keysize) {
u64 K[4]; u64 K[4];
size_t i; size_t i;
for(i = 0; i < numkeywords; i++) for(i = 0; i < (keysize >> 6); i++)
K[i] = ((u64 *)k)[i]; K[i] = ((u64 *)k)[i];
// 128 bit has only two keys A and B thus replacing both C and D with B then
if(keysize == 128) {
EK(K[0], K[1], K[1], K[1], ctx->rk, ctx->key);
} else {
EK(K[0], K[1], K[2], K[3], ctx->rk, ctx->key);
}
EK(K[0], K[1], K[2], K[3], ctx->rk, ctx->key); ctx->keysize = keysize;
return 0; return 0;
} }
@ -270,15 +281,11 @@ static int speck_expand_key (const unsigned char *k, speck_context_t *ctx) {
#define ROR8(X) (ROR(X,8)) #define ROR8(X) (ROR(X,8))
#endif // SSS3 vs. SSE2 ---------------------------------------------- #endif // SSS3 vs. SSE2 ----------------------------------------------
#define numrounds 34
#define numkeywords 4
#define R(X,Y,k) (X=XOR(ADD(ROR8(X),Y),k), Y=XOR(ROL(Y,3),X)) #define R(X,Y,k) (X=XOR(ADD(ROR8(X),Y),k), Y=XOR(ROL(Y,3),X))
#define Rx2(X,Y,k) (R(X[0],Y[0],k)) #define Rx2(X,Y,k) (R(X[0],Y[0],k))
#define Rx4(X,Y,k) (R(X[0],Y[0],k), R(X[1],Y[1],k)) #define Rx4(X,Y,k) (R(X[0],Y[0],k), R(X[1],Y[1],k))
#define Rx6(X,Y,k) (R(X[0],Y[0],k), R(X[1],Y[1],k), R(X[2],Y[2],k)) #define Rx6(X,Y,k) (R(X[0],Y[0],k), R(X[1],Y[1],k), R(X[2],Y[2],k))
#define Rx8(X,Y,k) (X[0]=ROR8(X[0]), X[0]=ADD(X[0],Y[0]), X[1]=ROR8(X[1]), X[1]=ADD(X[1],Y[1]), \ #define Rx8(X,Y,k) (X[0]=ROR8(X[0]), X[0]=ADD(X[0],Y[0]), X[1]=ROR8(X[1]), X[1]=ADD(X[1],Y[1]), \
X[2]=ROR8(X[2]), X[2]=ADD(X[2],Y[2]), X[3]=ROR8(X[3]), X[3]=ADD(X[3],Y[3]), \ X[2]=ROR8(X[2]), X[2]=ADD(X[2],Y[2]), X[3]=ROR8(X[3]), X[3]=ADD(X[3],Y[3]), \
X[0]=XOR(X[0],k), X[1]=XOR(X[1],k), X[2]=XOR(X[2],k), X[3]=XOR(X[3],k), \ X[0]=XOR(X[0],k), X[1]=XOR(X[1],k), X[2]=XOR(X[2],k), X[3]=XOR(X[3],k), \
@ -289,14 +296,15 @@ static int speck_expand_key (const unsigned char *k, speck_context_t *ctx) {
Y[0]=XOR(X[0],Y[0]), Y[1]=XOR(X[1],Y[1]), Y[2]=XOR(X[2],Y[2]), Y[3]=XOR(X[3],Y[3])) Y[0]=XOR(X[0],Y[0]), Y[1]=XOR(X[1],Y[1]), Y[2]=XOR(X[2],Y[2]), Y[3]=XOR(X[3],Y[3]))
#define Rx1(x,y,k) (x[0]=RCS(x[0],8), x[0]+=y[0], x[0]^=k, y[0]=LCS(y[0],3), y[0]^=x[0]) #define Rx1(x,y,k) (x[0]=RCS(x[0],8), x[0]+=y[0], x[0]^=k, y[0]=LCS(y[0],3), y[0]^=x[0])
#define Rx1b(x,y,k) (x=RCS(x,8), x+=y, x^=k, y=LCS(y,3), y^=x) #define Rx1b(x,y,k) (x=RCS(x,8), x+=y, x^=k, y=LCS(y,3), y^=x)
#define Encrypt(X,Y,k,n) (Rx##n(X,Y,k[0]), Rx##n(X,Y,k[1]), Rx##n(X,Y,k[2]), Rx##n(X,Y,k[3]), Rx##n(X,Y,k[4]), Rx##n(X,Y,k[5]), Rx##n(X,Y,k[6]), Rx##n(X,Y,k[7]), \ #define Encrypt_128(X,Y,k,n) (Rx##n(X,Y,k[0]), Rx##n(X,Y,k[1]), Rx##n(X,Y,k[2]), Rx##n(X,Y,k[3]), Rx##n(X,Y,k[4]), Rx##n(X,Y,k[5]), Rx##n(X,Y,k[6]), Rx##n(X,Y,k[7]), \
Rx##n(X,Y,k[8]), Rx##n(X,Y,k[9]), Rx##n(X,Y,k[10]), Rx##n(X,Y,k[11]), Rx##n(X,Y,k[12]), Rx##n(X,Y,k[13]), Rx##n(X,Y,k[14]), Rx##n(X,Y,k[15]), \ Rx##n(X,Y,k[8]), Rx##n(X,Y,k[9]), Rx##n(X,Y,k[10]), Rx##n(X,Y,k[11]), Rx##n(X,Y,k[12]), Rx##n(X,Y,k[13]), Rx##n(X,Y,k[14]), Rx##n(X,Y,k[15]), \
Rx##n(X,Y,k[16]), Rx##n(X,Y,k[17]), Rx##n(X,Y,k[18]), Rx##n(X,Y,k[19]), Rx##n(X,Y,k[20]), Rx##n(X,Y,k[21]), Rx##n(X,Y,k[22]), Rx##n(X,Y,k[23]), \ Rx##n(X,Y,k[16]), Rx##n(X,Y,k[17]), Rx##n(X,Y,k[18]), Rx##n(X,Y,k[19]), Rx##n(X,Y,k[20]), Rx##n(X,Y,k[21]), Rx##n(X,Y,k[22]), Rx##n(X,Y,k[23]), \
Rx##n(X,Y,k[24]), Rx##n(X,Y,k[25]), Rx##n(X,Y,k[26]), Rx##n(X,Y,k[27]), Rx##n(X,Y,k[28]), Rx##n(X,Y,k[29]), Rx##n(X,Y,k[30]), Rx##n(X,Y,k[31]), \ Rx##n(X,Y,k[24]), Rx##n(X,Y,k[25]), Rx##n(X,Y,k[26]), Rx##n(X,Y,k[27]), Rx##n(X,Y,k[28]), Rx##n(X,Y,k[29]), Rx##n(X,Y,k[30]), Rx##n(X,Y,k[31]))
Rx##n(X,Y,k[32]), Rx##n(X,Y,k[33]))
#define Encrypt_256(X,Y,k,n) (Encrypt_128(X,Y,k,n), \
Rx##n(X,Y,k[32]), Rx##n(X,Y,k[33]))
#define RK(X,Y,k,key,i) (SET1(k[i],Y), key[i]=Y, X=RCS(X,8), X+=Y, X^=i, Y=LCS(Y,3), Y^=X) #define RK(X,Y,k,key,i) (SET1(k[i],Y), key[i]=Y, X=RCS(X,8), X+=Y, X^=i, Y=LCS(Y,3), Y^=X)
@ -306,50 +314,57 @@ static int speck_expand_key (const unsigned char *k, speck_context_t *ctx) {
RK(B,A,k,key,21), RK(C,A,k,key,22), RK(D,A,k,key,23), RK(B,A,k,key,24), RK(C,A,k,key,25), RK(D,A,k,key,26), RK(B,A,k,key,27), \ RK(B,A,k,key,21), RK(C,A,k,key,22), RK(D,A,k,key,23), RK(B,A,k,key,24), RK(C,A,k,key,25), RK(D,A,k,key,26), RK(B,A,k,key,27), \
RK(C,A,k,key,28), RK(D,A,k,key,29), RK(B,A,k,key,30), RK(C,A,k,key,31), RK(D,A,k,key,32), RK(B,A,k,key,33)) RK(C,A,k,key,28), RK(D,A,k,key,29), RK(B,A,k,key,30), RK(C,A,k,key,31), RK(D,A,k,key,32), RK(B,A,k,key,33))
#define Encrypt_Dispatcher(keysize) \
u64 x[2], y[2]; \
u128 X[4], Y[4], Z[4]; \
\
if(numbytes == 16) { \
x[0] = nonce[1]; y[0] = nonce[0]; nonce[0]++; \
Encrypt_##keysize(x, y, ctx.key, 1); \
((u64 *)out)[1] = x[0]; ((u64 *)out)[0] = y[0]; \
return 0; \
} \
\
SET1(X[0], nonce[1]); SET2(Y[0], nonce[0]); \
\
if(numbytes == 32) \
Encrypt_##keysize(X, Y, ctx.rk, 2); \
else { \
X[1] = X[0]; Y[1] = ADD(Y[0], _two); \
if(numbytes == 64) \
Encrypt_##keysize(X, Y, ctx.rk, 4); \
else { \
X[2] = X[0]; Y[2] = ADD(Y[1], _two); \
if(numbytes == 96) \
Encrypt_##keysize(X, Y, ctx.rk, 6); \
else { \
X[3] = X[0]; Y[3] = ADD(Y[2], _two); \
Encrypt_##keysize(X, Y, ctx.rk, 8); \
} \
} \
} \
\
nonce[0] += (numbytes >> 4); \
\
XOR_STORE(in, out, X[0], Y[0]); \
if(numbytes >= 64) \
XOR_STORE(in + 32, out + 32, X[1], Y[1]); \
if(numbytes >= 96) \
XOR_STORE(in + 64, out + 64, X[2], Y[2]); \
if(numbytes >= 128) \
XOR_STORE(in + 96, out + 96, X[3], Y[3]); \
\
return 0
// attention: ctx is provided by value as it is faster in this case, astonishingly // attention: ctx is provided by value as it is faster in this case, astonishingly
static int speck_encrypt_xor (unsigned char *out, const unsigned char *in, u64 nonce[], const speck_context_t ctx, int numbytes) { static int speck_encrypt_xor (unsigned char *out, const unsigned char *in, u64 nonce[], const speck_context_t ctx, int numbytes) {
u64 x[2], y[2]; if(ctx.keysize == 256) {
u128 X[4], Y[4], Z[4]; Encrypt_Dispatcher(256);
} else {
if(numbytes == 16) { Encrypt_Dispatcher(128);
x[0] = nonce[1]; y[0] = nonce[0]; nonce[0]++;
Encrypt(x, y, ctx.key, 1);
((u64 *)out)[1] = x[0]; ((u64 *)out)[0] = y[0];
return 0;
} }
SET1(X[0], nonce[1]); SET2 (Y[0], nonce[0]);
if(numbytes == 32)
Encrypt(X, Y, ctx.rk, 2);
else {
X[1] = X[0]; Y[1] = ADD(Y[0], _two);
if(numbytes == 64)
Encrypt(X, Y, ctx.rk, 4);
else {
X[2] = X[0]; Y[2] = ADD(Y[1], _two);
if(numbytes == 96)
Encrypt(X, Y, ctx.rk, 6);
else {
X[3] = X[0]; Y[3] = ADD(Y[2], _two);
Encrypt(X, Y, ctx.rk, 8);
}
}
}
nonce[0] += (numbytes >> 4);
XOR_STORE(in, out, X[0], Y[0]);
if(numbytes >= 64)
XOR_STORE(in + 32, out + 32, X[1], Y[1]);
if(numbytes >= 96)
XOR_STORE(in + 64, out + 64, X[2], Y[2]);
if(numbytes >= 128)
XOR_STORE(in + 96, out + 96, X[3], Y[3]);
return 0;
} }
@ -405,15 +420,22 @@ static int internal_speck_ctr (unsigned char *out, const unsigned char *in, unsi
} }
static int speck_expand_key (const unsigned char *k, speck_context_t *ctx) { static int speck_expand_key (speck_context_t *ctx, const unsigned char *k, int keysize) {
u64 K[4]; u64 K[4];
size_t i; size_t i;
for(i = 0; i < numkeywords; i++) for(i = 0; i < (keysize >> 6 ); i++)
K[i] = ((u64 *)k)[i]; K[i] = ((u64 *)k)[i];
EK(K[0], K[1], K[2], K[3], ctx->rk, ctx->key); // 128 bit has only two keys A and B thus replacing both C and D with B then
if(keysize == 128) {
EK(K[0], K[1], K[1], K[1], ctx->rk, ctx->key);
} else {
EK(K[0], K[1], K[2], K[3], ctx->rk, ctx->key);
}
ctx->keysize = keysize;
return 0; return 0;
} }
@ -448,13 +470,9 @@ static int speck_expand_key (const unsigned char *k, speck_context_t *ctx) {
#define ROR8(X) SET(vtbl1_u8((uint8x8_t)vget_low_u64(X),tableR), vtbl1_u8((uint8x8_t)vget_high_u64(X),tableR)) #define ROR8(X) SET(vtbl1_u8((uint8x8_t)vget_low_u64(X),tableR), vtbl1_u8((uint8x8_t)vget_high_u64(X),tableR))
#define ROL8(X) SET(vtbl1_u8((uint8x8_t)vget_low_u64(X),tableL), vtbl1_u8((uint8x8_t)vget_high_u64(X),tableL)) #define ROL8(X) SET(vtbl1_u8((uint8x8_t)vget_low_u64(X),tableL), vtbl1_u8((uint8x8_t)vget_high_u64(X),tableL))
#define numrounds 34
#define numkeywords 4
#define R(X,Y,k) (X=XOR(ADD(ROR8(X),Y),k), Y=XOR(ROL(Y,3),X)) #define R(X,Y,k) (X=XOR(ADD(ROR8(X),Y),k), Y=XOR(ROL(Y,3),X))
#define Rx2(X,Y,k) (R(X[0],Y[0],k)) #define Rx2(X,Y,k) (R(X[0],Y[0],k))
#define Rx4(X,Y,k) (R(X[0],Y[0],k), R(X[1],Y[1],k)) #define Rx4(X,Y,k) (R(X[0],Y[0],k), R(X[1],Y[1],k))
#define Rx6(X,Y,k) (R(X[0],Y[0],k), R(X[1],Y[1],k), R(X[2],Y[2],k)) #define Rx6(X,Y,k) (R(X[0],Y[0],k), R(X[1],Y[1],k), R(X[2],Y[2],k))
#define Rx8(X,Y,k) (X[0]=ROR8(X[0]), X[0]=ADD(X[0],Y[0]), X[0]=XOR(X[0],k), X[1]=ROR8(X[1]), X[1]=ADD(X[1],Y[1]), X[1]=XOR(X[1],k), \ #define Rx8(X,Y,k) (X[0]=ROR8(X[0]), X[0]=ADD(X[0],Y[0]), X[0]=XOR(X[0],k), X[1]=ROR8(X[1]), X[1]=ADD(X[1],Y[1]), X[1]=XOR(X[1],k), \
@ -465,14 +483,15 @@ static int speck_expand_key (const unsigned char *k, speck_context_t *ctx) {
Y[0]=XOR(X[0],Y[0]), Y[1]=XOR(X[1],Y[1]), Y[2]=XOR(X[2],Y[2]), Y[3]=XOR(X[3],Y[3])) Y[0]=XOR(X[0],Y[0]), Y[1]=XOR(X[1],Y[1]), Y[2]=XOR(X[2],Y[2]), Y[3]=XOR(X[3],Y[3]))
#define Rx1(x,y,k) (x[0]=RCS(x[0],8), x[0]+=y[0], x[0]^=k, y[0]=LCS(y[0],3), y[0]^=x[0]) #define Rx1(x,y,k) (x[0]=RCS(x[0],8), x[0]+=y[0], x[0]^=k, y[0]=LCS(y[0],3), y[0]^=x[0])
#define Rx1b(x,y,k) (x=RCS(x,8), x+=y, x^=k, y=LCS(y,3), y^=x) #define Rx1b(x,y,k) (x=RCS(x,8), x+=y, x^=k, y=LCS(y,3), y^=x)
#define Encrypt(X,Y,k,n) (Rx##n(X,Y,k[0]), Rx##n(X,Y,k[1]), Rx##n(X,Y,k[2]), Rx##n(X,Y,k[3]), Rx##n(X,Y,k[4]), Rx##n(X,Y,k[5]), Rx##n(X,Y,k[6]), Rx##n(X,Y,k[7]), \ #define Encrypt_128(X,Y,k,n) (Rx##n(X,Y,k[0]), Rx##n(X,Y,k[1]), Rx##n(X,Y,k[2]), Rx##n(X,Y,k[3]), Rx##n(X,Y,k[4]), Rx##n(X,Y,k[5]), Rx##n(X,Y,k[6]), Rx##n(X,Y,k[7]), \
Rx##n(X,Y,k[8]), Rx##n(X,Y,k[9]), Rx##n(X,Y,k[10]), Rx##n(X,Y,k[11]), Rx##n(X,Y,k[12]), Rx##n(X,Y,k[13]), Rx##n(X,Y,k[14]), Rx##n(X,Y,k[15]), \ Rx##n(X,Y,k[8]), Rx##n(X,Y,k[9]), Rx##n(X,Y,k[10]), Rx##n(X,Y,k[11]), Rx##n(X,Y,k[12]), Rx##n(X,Y,k[13]), Rx##n(X,Y,k[14]), Rx##n(X,Y,k[15]), \
Rx##n(X,Y,k[16]), Rx##n(X,Y,k[17]), Rx##n(X,Y,k[18]), Rx##n(X,Y,k[19]), Rx##n(X,Y,k[20]), Rx##n(X,Y,k[21]), Rx##n(X,Y,k[22]), Rx##n(X,Y,k[23]), \ Rx##n(X,Y,k[16]), Rx##n(X,Y,k[17]), Rx##n(X,Y,k[18]), Rx##n(X,Y,k[19]), Rx##n(X,Y,k[20]), Rx##n(X,Y,k[21]), Rx##n(X,Y,k[22]), Rx##n(X,Y,k[23]), \
Rx##n(X,Y,k[24]), Rx##n(X,Y,k[25]), Rx##n(X,Y,k[26]), Rx##n(X,Y,k[27]), Rx##n(X,Y,k[28]), Rx##n(X,Y,k[29]), Rx##n(X,Y,k[30]), Rx##n(X,Y,k[31]), \ Rx##n(X,Y,k[24]), Rx##n(X,Y,k[25]), Rx##n(X,Y,k[26]), Rx##n(X,Y,k[27]), Rx##n(X,Y,k[28]), Rx##n(X,Y,k[29]), Rx##n(X,Y,k[30]), Rx##n(X,Y,k[31]))
Rx##n(X,Y,k[32]), Rx##n(X,Y,k[33]))
#define Encrypt_256(X,Y,k,n) (Encrypt_128(X,Y,k,n), \
Rx##n(X,Y,k[32]), Rx##n(X,Y,k[33]))
#define RK(X,Y,k,key,i) (SET1(k[i],Y), key[i]=Y, X=RCS(X,8), X+=Y, X^=i, Y=LCS(Y,3), Y^=X) #define RK(X,Y,k,key,i) (SET1(k[i],Y), key[i]=Y, X=RCS(X,8), X+=Y, X^=i, Y=LCS(Y,3), Y^=X)
@ -482,47 +501,54 @@ static int speck_expand_key (const unsigned char *k, speck_context_t *ctx) {
RK(B,A,k,key,21), RK(C,A,k,key,22), RK(D,A,k,key,23), RK(B,A,k,key,24), RK(C,A,k,key,25), RK(D,A,k,key,26), RK(B,A,k,key,27), \ RK(B,A,k,key,21), RK(C,A,k,key,22), RK(D,A,k,key,23), RK(B,A,k,key,24), RK(C,A,k,key,25), RK(D,A,k,key,26), RK(B,A,k,key,27), \
RK(C,A,k,key,28), RK(D,A,k,key,29), RK(B,A,k,key,30), RK(C,A,k,key,31), RK(D,A,k,key,32), RK(B,A,k,key,33)) RK(C,A,k,key,28), RK(D,A,k,key,29), RK(B,A,k,key,30), RK(C,A,k,key,31), RK(D,A,k,key,32), RK(B,A,k,key,33))
#define Encrypt_Dispatcher(keysize) \
u64 x[2], y[2]; \
u128 X[4], Y[4], Z[4]; \
\
if(numbytes == 16) { \
x[0] = nonce[1]; y[0]=nonce[0]; nonce[0]++; \
Encrypt_##keysize(x, y, ctx->key, 1); \
((u64 *)out)[1] = x[0]; ((u64 *)out)[0] = y[0]; \
return 0; \
} \
\
SET1(X[0], nonce[1]); SET2(Y[0], nonce[0]); \
\
if(numbytes == 32) \
Encrypt_##keysize(X, Y, ctx->rk, 2); \
else { \
X[1] = X[0]; SET2(Y[1], nonce[0]); \
if(numbytes == 64) \
Encrypt_##keysize(X, Y, ctx->rk, 4); \
else { \
X[2] = X[0]; SET2(Y[2], nonce[0]); \
if(numbytes == 96) \
Encrypt_##keysize(X, Y, ctx->rk, 6); \
else { \
X[3] = X[0]; SET2(Y[3], nonce[0]); \
Encrypt_##keysize(X, Y, ctx->rk, 8); \
} \
} \
} \
\
XOR_STORE(in, out, X[0], Y[0]); \
if(numbytes >= 64) \
XOR_STORE(in + 32, out + 32, X[1], Y[1]); \
if(numbytes >= 96) \
XOR_STORE(in + 64, out + 64, X[2], Y[2]); \
if(numbytes >= 128) \
XOR_STORE(in + 96, out + 96, X[3], Y[3]); \
\
return 0
static int speck_encrypt_xor (unsigned char *out, const unsigned char *in, u64 nonce[], speck_context_t *ctx, int numbytes) {
u64 x[2], y[2];
u128 X[4], Y[4], Z[4];
if(numbytes == 16) { static int speck_encrypt_xor (unsigned char *out, const unsigned char *in, u64 nonce[], speck_context_t *ctx, int numbytes) {
x[0] = nonce[1]; y[0]=nonce[0]; nonce[0]++;
Encrypt(x, y, ctx->key, 1);
((u64 *)out)[1] = x[0]; ((u64 *)out)[0] = y[0];
return 0;
}
SET1(X[0], nonce[1]); SET2(Y[0], nonce[0]); if(ctx->keysize == 256) {
Encrypt_Dispatcher(256);
if(numbytes == 32) } else {
Encrypt(X, Y, ctx->rk, 2); Encrypt_Dispatcher(128);
else {
X[1] = X[0]; SET2(Y[1], nonce[0]);
if(numbytes == 64)
Encrypt(X, Y, ctx->rk, 4);
else {
X[2] = X[0]; SET2(Y[2], nonce[0]);
if(numbytes == 96)
Encrypt(X, Y, ctx->rk, 6);
else {
X[3] = X[0]; SET2(Y[3], nonce[0]);
Encrypt(X, Y, ctx->rk, 8);
}
}
} }
XOR_STORE(in, out, X[0], Y[0]);
if(numbytes >= 64)
XOR_STORE(in + 32, out + 32, X[1], Y[1]);
if(numbytes >= 96)
XOR_STORE(in + 64, out + 64, X[2], Y[2]);
if(numbytes >= 128)
XOR_STORE(in + 96, out + 96, X[3], Y[3]);
return 0;
} }
@ -577,15 +603,22 @@ static int internal_speck_ctr (unsigned char *out, const unsigned char *in, unsi
} }
static int speck_expand_key (const unsigned char *k, speck_context_t *ctx) { static int speck_expand_key (speck_context_t *ctx, const unsigned char *k, int keysize) {
u64 K[4]; u64 K[4];
size_t i; size_t i;
for(i = 0; i < numkeywords; i++) for(i = 0; i < (keysize >> 6); i++)
K[i] = ((u64 *)k)[i]; K[i] = ((u64 *)k)[i];
EK(K[0], K[1], K[2], K[3], ctx->rk, ctx->key); // 128 bit has only two keys A and B thus replacing both C and D with B then
if(keysize == 128) {
EK(K[0], K[1], K[1], K[1], ctx->rk, ctx->key);
} else {
EK(K[0], K[1], K[2], K[3], ctx->rk, ctx->key);
}
ctx->keysize = keysize;
return 0; return 0;
} }
@ -599,11 +632,11 @@ static int speck_expand_key (const unsigned char *k, speck_context_t *ctx) {
#define R(x,y,k) (x=ROR(x,8), x+=y, x^=k, y=ROL(y,3), y^=x) #define R(x,y,k) (x=ROR(x,8), x+=y, x^=k, y=ROL(y,3), y^=x)
static int speck_encrypt (u64 *u, u64 *v, speck_context_t *ctx) { static int speck_encrypt (u64 *u, u64 *v, speck_context_t *ctx, int numrounds) {
u64 i, x = *u, y = *v; u64 i, x = *u, y = *v;
for(i = 0; i < 34; i++) for(i = 0; i < numrounds; i++)
R(x, y, ctx->key[i]); R(x, y, ctx->key[i]);
*u = x; *v = y; *u = x; *v = y;
@ -617,6 +650,7 @@ static int internal_speck_ctr (unsigned char *out, const unsigned char *in, unsi
u64 i, nonce[2], x, y, t; u64 i, nonce[2], x, y, t;
unsigned char *block = malloc(16); unsigned char *block = malloc(16);
int numrounds = (ctx->keysize == 256)?34:32;
if(!inlen) { if(!inlen) {
free(block); free(block);
@ -628,7 +662,7 @@ static int internal_speck_ctr (unsigned char *out, const unsigned char *in, unsi
t=0; t=0;
while(inlen >= 16) { while(inlen >= 16) {
x = nonce[1]; y = nonce[0]; nonce[0]++; x = nonce[1]; y = nonce[0]; nonce[0]++;
speck_encrypt(&x, &y, ctx); speck_encrypt(&x, &y, ctx, numrounds);
((u64 *)out)[1+t] = htole64(x ^ ((u64 *)in)[1+t]); ((u64 *)out)[1+t] = htole64(x ^ ((u64 *)in)[1+t]);
((u64 *)out)[0+t] = htole64(y ^ ((u64 *)in)[0+t]); ((u64 *)out)[0+t] = htole64(y ^ ((u64 *)in)[0+t]);
t += 2; t += 2;
@ -637,7 +671,7 @@ static int internal_speck_ctr (unsigned char *out, const unsigned char *in, unsi
if(inlen > 0) { if(inlen > 0) {
x = nonce[1]; y = nonce[0]; x = nonce[1]; y = nonce[0];
speck_encrypt(&x, &y, ctx); speck_encrypt(&x, &y, ctx, numrounds);
((u64 *)block)[1] = htole64(x); ((u64 *)block)[0] = htole64(y); ((u64 *)block)[1] = htole64(x); ((u64 *)block)[0] = htole64(y);
for(i = 0; i < inlen; i++) for(i = 0; i < inlen; i++)
out[i + 8*t] = block[i] ^ in[i + 8*t]; out[i + 8*t] = block[i] ^ in[i + 8*t];
@ -649,24 +683,33 @@ static int internal_speck_ctr (unsigned char *out, const unsigned char *in, unsi
} }
static int speck_expand_key (const unsigned char *k, speck_context_t *ctx) { static int speck_expand_key (speck_context_t *ctx, const unsigned char *k, int keysize) {
u64 K[4]; u64 K[4];
u64 i; u64 i;
for(i = 0; i < 4; i++) for(i = 0; i < (keysize >> 6); i++)
K[i] = htole64( ((u64 *)k)[i] ); K[i] = htole64( ((u64 *)k)[i] );
for(i = 0; i < 33; i += 3) { for(i = 0; i < 33; i += 3) {
ctx->key[i ] = K[0]; ctx->key[i ] = K[0];
R(K[1], K[0], i ); R(K[1], K[0], i );
ctx->key[i+1] = K[0];
R(K[2], K[0], i + 1); if(keysize == 256) {
ctx->key[i+2] = K[0]; ctx->key[i+1] = K[0];
R(K[3], K[0], i + 2); R(K[2], K[0], i + 1);
ctx->key[i+2] = K[0];
R(K[3], K[0], i + 2);
} else {
// counter the i += 3 to make the loop go one by one in this case
// we can afford the unused 31 and 32
i -= 2;
}
} }
ctx->key[33] = K[0]; ctx->key[33] = K[0];
ctx->keysize = keysize;
return 1; return 1;
} }
@ -674,7 +717,7 @@ static int speck_expand_key (const unsigned char *k, speck_context_t *ctx) {
#endif // AVX, SSE, NEON, plain C ------------------------------------------------------------------------ #endif // AVX, SSE, NEON, plain C ------------------------------------------------------------------------
// this functions wraps the call to internal speck_ctr functions which have slightly different // this functions wraps the call to internal_speck_ctr functions which have slightly different
// signature -- ctx by value for SSE with SPECK_CTX_BYVAL defined in speck.h, by name otherwise // signature -- ctx by value for SSE with SPECK_CTX_BYVAL defined in speck.h, by name otherwise
int speck_ctr (unsigned char *out, const unsigned char *in, unsigned long long inlen, int speck_ctr (unsigned char *out, const unsigned char *in, unsigned long long inlen,
const unsigned char *n, speck_context_t *ctx) { const unsigned char *n, speck_context_t *ctx) {
@ -688,7 +731,8 @@ int speck_ctr (unsigned char *out, const unsigned char *in, unsigned long long i
} }
int speck_init (const unsigned char *k, speck_context_t **ctx) { // create context loaded with round keys ready for use, key size either 128 or 256 (bits)
int speck_init (speck_context_t **ctx, const unsigned char *k, int keysize) {
#if defined (SPECK_ALIGNED_CTX) #if defined (SPECK_ALIGNED_CTX)
*ctx = (speck_context_t*)_mm_malloc(sizeof(speck_context_t), SPECK_ALIGNED_CTX); *ctx = (speck_context_t*)_mm_malloc(sizeof(speck_context_t), SPECK_ALIGNED_CTX);
@ -699,7 +743,7 @@ int speck_init (const unsigned char *k, speck_context_t **ctx) {
return -1; return -1;
} }
return speck_expand_key(k, *ctx); return speck_expand_key(*ctx, k, keysize);
} }
@ -720,87 +764,6 @@ int speck_deinit (speck_context_t *ctx) {
// ---------------------------------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------------------------------
// cipher SPECK -- 128 bit block size -- 128 bit key size -- CTR mode
// used for header encryption, thus the postfix '_he'
// for now: just plain C -- AVX, SSE, NEON do not make sense for short header
#define ROR64(x,r) (((x)>>(r))|((x)<<(64-(r))))
#define ROL64(x,r) (((x)<<(r))|((x)>>(64-(r))))
#define R64(x,y,k) (x=ROR64(x,8), x+=y, x^=k, y=ROL64(y,3), y^=x)
static int speck_encrypt_he (u64 *u, u64 *v, speck_context_t *ctx) {
u64 i, x=*u, y=*v;
for(i = 0; i < 32; i++)
R64(x, y, ctx->key[i]);
*u = x; *v = y;
return 0;
}
int speck_he (unsigned char *out, const unsigned char *in, unsigned long long inlen,
const unsigned char *n, speck_context_t *ctx) {
u64 i, nonce[2], x, y, t;
unsigned char *block = malloc(16);
if(!inlen) {
free(block);
return 0;
}
nonce[0] = htole64 ( ((u64*)n)[0] );
nonce[1] = htole64 ( ((u64*)n)[1] );
t = 0;
while(inlen >= 16) {
x = nonce[1]; y = nonce[0]; nonce[0]++;
speck_encrypt_he(&x, &y, ctx);
((u64 *)out)[1+t] = htole64(x ^ ((u64 *)in)[1+t]);
((u64 *)out)[0+t] = htole64(y ^ ((u64 *)in)[0+t]);
t += 2;
inlen -= 16;
}
if(inlen > 0) {
x = nonce[1]; y = nonce[0];
speck_encrypt_he(&x, &y, ctx);
((u64 *)block)[1] = htole64(x); ((u64 *)block)[0] = htole64(y);
for(i = 0; i < inlen; i++)
out[i+8*t] = block[i] ^ in[i+8*t];
}
free(block);
return 0;
}
int speck_expand_key_he (const unsigned char *k, speck_context_t *ctx) {
u64 A, B;
u64 i;
A = htole64( ((u64 *)k)[0] );
B = htole64( ((u64 *)k)[1] );
for(i = 0; i < 32; i++) {
ctx->key[i] = A;
R64(B, A, i);
}
return 1;
}
// ----------------------------------------------------------------------------------------------------------------
// cipher SPECK -- 96 bit block size -- 96 bit key size -- ECB mode // cipher SPECK -- 96 bit block size -- 96 bit key size -- ECB mode
// follows endianess rules as used in official implementation guide and NOT as in original 2013 cipher presentation // follows endianess rules as used in official implementation guide and NOT as in original 2013 cipher presentation
// used for IV in header encryption, thus the in/postfix 'he_iv' // used for IV in header encryption, thus the in/postfix 'he_iv'
@ -814,7 +777,7 @@ int speck_expand_key_he (const unsigned char *k, speck_context_t *ctx) {
#define DR96(x,y,k) (y^=x, y=ROTR48(y,3), x^=k, x-=y, x=ROTL48(x,8)) #define DR96(x,y,k) (y^=x, y=ROTR48(y,3), x^=k, x-=y, x=ROTL48(x,8))
int speck_he_iv_encrypt (unsigned char *inout, speck_context_t *ctx) { int speck_96_encrypt (unsigned char *inout, speck_context_t *ctx) {
u64 x, y; u64 x, y;
int i; int i;
@ -835,7 +798,7 @@ int speck_he_iv_encrypt (unsigned char *inout, speck_context_t *ctx) {
} }
int speck_he_iv_decrypt (unsigned char *inout, speck_context_t *ctx) { int speck_96_decrypt (unsigned char *inout, speck_context_t *ctx) {
u64 x, y; u64 x, y;
int i; int i;
@ -856,7 +819,7 @@ int speck_he_iv_decrypt (unsigned char *inout, speck_context_t *ctx) {
} }
int speck_expand_key_he_iv (const unsigned char *k, speck_context_t *ctx) { int speck_96_expand_key (speck_context_t *ctx, const unsigned char *k) {
u64 A, B; u64 A, B;
int i; int i;

4
src/transform_speck.c

@ -134,8 +134,8 @@ static int setup_speck_key (transop_speck_t *priv, const uint8_t *key, ssize_t k
// the input key always gets hashed to make a more unpredictable and more complete use of the key space // the input key always gets hashed to make a more unpredictable and more complete use of the key space
pearson_hash_256(key_mat_buf, key, key_size); pearson_hash_256(key_mat_buf, key, key_size);
// expand the key material to the context (= round keys) // expand the key material to the context (= round keys), 256 bit keysize
speck_init(key_mat_buf, &(priv->ctx)); speck_init(&(priv->ctx), key_mat_buf, 256);
traceEvent(TRACE_DEBUG, "setup_speck_key completed\n"); traceEvent(TRACE_DEBUG, "setup_speck_key completed\n");

Loading…
Cancel
Save