|
|
@ -235,6 +235,284 @@ int aes_init (const unsigned char *key, size_t key_size, aes_context_t **ctx) { |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
#elif defined (__AES__) && defined (__SSE2__) // Intel's AES-NI ---------------------------
|
|
|
|
|
|
|
|
|
|
|
|
// inspired by https://gist.github.com/acapola/d5b940da024080dfaf5f
|
|
|
|
// furthered by the help of Sebastian Ramacher's implementation found at
|
|
|
|
// https://chromium.googlesource.com/external/github.com/dlitz/pycrypto/+/junk/master/src/AESNI.c
|
|
|
|
// modified along Intel's white paper on AES Instruction Set
|
|
|
|
// https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
|
|
|
|
|
|
|
|
|
|
|
|
static __m128i aes128_keyexpand(__m128i key, __m128i keygened, uint8_t shuf) { |
|
|
|
key = _mm_xor_si128(key, _mm_slli_si128(key, 4)); |
|
|
|
key = _mm_xor_si128(key, _mm_slli_si128(key, 4)); |
|
|
|
key = _mm_xor_si128(key, _mm_slli_si128(key, 4)); |
|
|
|
// unfortunately, shuffle expects immediate argument ... macrorize???!!!
|
|
|
|
switch (shuf) { |
|
|
|
case 0x55: |
|
|
|
keygened = _mm_shuffle_epi32(keygened, 0x55 ); |
|
|
|
break; |
|
|
|
case 0xaa: |
|
|
|
keygened = _mm_shuffle_epi32(keygened, 0xaa ); |
|
|
|
break; |
|
|
|
case 0xff: |
|
|
|
keygened = _mm_shuffle_epi32(keygened, 0xff ); |
|
|
|
break; |
|
|
|
default: |
|
|
|
break; |
|
|
|
} |
|
|
|
return _mm_xor_si128(key, keygened); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
static __m128i aes192_keyexpand_2(__m128i key, __m128i key2) |
|
|
|
{ |
|
|
|
key = _mm_shuffle_epi32(key, 0xff); |
|
|
|
key2 = _mm_xor_si128(key2, _mm_slli_si128(key2, 4)); |
|
|
|
return _mm_xor_si128(key, key2); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
#define KEYEXP128(K, I) aes128_keyexpand(K, _mm_aeskeygenassist_si128(K, I), 0xff) |
|
|
|
#define KEYEXP192(K1, K2, I) aes128_keyexpand(K1, _mm_aeskeygenassist_si128(K2, I), 0x55) |
|
|
|
#define KEYEXP192_2(K1, K2) aes192_keyexpand_2(K1, K2) |
|
|
|
#define KEYEXP256(K1, K2, I) aes128_keyexpand(K1, _mm_aeskeygenassist_si128(K2, I), 0xff) |
|
|
|
#define KEYEXP256_2(K1, K2) aes128_keyexpand(K1, _mm_aeskeygenassist_si128(K2, 0x00), 0xaa) |
|
|
|
|
|
|
|
|
|
|
|
// key setup
|
|
|
|
static int aes_internal_key_setup (aes_context_t *ctx, const uint8_t *key, int key_bits) { |
|
|
|
|
|
|
|
// number of rounds
|
|
|
|
ctx->Nr = 6 + (key_bits / 32); |
|
|
|
|
|
|
|
// encryption keys
|
|
|
|
switch (key_bits) { |
|
|
|
case 128: { |
|
|
|
ctx->rk_enc[0] = _mm_loadu_si128((const __m128i*)key); |
|
|
|
ctx->rk_enc[1] = KEYEXP128(ctx->rk_enc[0], 0x01); |
|
|
|
ctx->rk_enc[2] = KEYEXP128(ctx->rk_enc[1], 0x02); |
|
|
|
ctx->rk_enc[3] = KEYEXP128(ctx->rk_enc[2], 0x04); |
|
|
|
ctx->rk_enc[4] = KEYEXP128(ctx->rk_enc[3], 0x08); |
|
|
|
ctx->rk_enc[5] = KEYEXP128(ctx->rk_enc[4], 0x10); |
|
|
|
ctx->rk_enc[6] = KEYEXP128(ctx->rk_enc[5], 0x20); |
|
|
|
ctx->rk_enc[7] = KEYEXP128(ctx->rk_enc[6], 0x40); |
|
|
|
ctx->rk_enc[8] = KEYEXP128(ctx->rk_enc[7], 0x80); |
|
|
|
ctx->rk_enc[9] = KEYEXP128(ctx->rk_enc[8], 0x1B); |
|
|
|
ctx->rk_enc[10] = KEYEXP128(ctx->rk_enc[9], 0x36); |
|
|
|
break; |
|
|
|
} |
|
|
|
case 192: { |
|
|
|
__m128i temp[2]; |
|
|
|
ctx->rk_enc[0] = _mm_loadu_si128((const __m128i*) key); |
|
|
|
ctx->rk_enc[1] = _mm_loadu_si128((const __m128i*) (key+16)); |
|
|
|
temp[0] = KEYEXP192(ctx->rk_enc[0], ctx->rk_enc[1], 0x01); |
|
|
|
temp[1] = KEYEXP192_2(temp[0], ctx->rk_enc[1]); |
|
|
|
ctx->rk_enc[1] = (__m128i)_mm_shuffle_pd((__m128d)ctx->rk_enc[1], (__m128d)temp[0], 0); |
|
|
|
ctx->rk_enc[2] = (__m128i)_mm_shuffle_pd((__m128d)temp[0], (__m128d)temp[1], 1); |
|
|
|
ctx->rk_enc[3] = KEYEXP192(temp[0], temp[1], 0x02); |
|
|
|
ctx->rk_enc[4] = KEYEXP192_2(ctx->rk_enc[3], temp[1]); |
|
|
|
temp[0] = KEYEXP192(ctx->rk_enc[3], ctx->rk_enc[4], 0x04); |
|
|
|
temp[1] = KEYEXP192_2(temp[0], ctx->rk_enc[4]); |
|
|
|
ctx->rk_enc[4] = (__m128i)_mm_shuffle_pd((__m128d)ctx->rk_enc[4], (__m128d)temp[0], 0); |
|
|
|
ctx->rk_enc[5] = (__m128i)_mm_shuffle_pd((__m128d)temp[0], (__m128d)temp[1], 1); |
|
|
|
ctx->rk_enc[6] = KEYEXP192(temp[0], temp[1], 0x08); |
|
|
|
ctx->rk_enc[7] = KEYEXP192_2(ctx->rk_enc[6], temp[1]); |
|
|
|
temp[0] = KEYEXP192(ctx->rk_enc[6], ctx->rk_enc[7], 0x10); |
|
|
|
temp[1] = KEYEXP192_2(temp[0], ctx->rk_enc[7]); |
|
|
|
ctx->rk_enc[7] = (__m128i)_mm_shuffle_pd((__m128d)ctx->rk_enc[7], (__m128d)temp[0], 0); |
|
|
|
ctx->rk_enc[8] = (__m128i)_mm_shuffle_pd((__m128d)temp[0], (__m128d)temp[1], 1); |
|
|
|
ctx->rk_enc[9] = KEYEXP192(temp[0], temp[1], 0x20); |
|
|
|
ctx->rk_enc[10] = KEYEXP192_2(ctx->rk_enc[9], temp[1]); |
|
|
|
temp[0] = KEYEXP192(ctx->rk_enc[9], ctx->rk_enc[10], 0x40); |
|
|
|
temp[1] = KEYEXP192_2(temp[0], ctx->rk_enc[10]); |
|
|
|
ctx->rk_enc[10] = (__m128i)_mm_shuffle_pd((__m128d)ctx->rk_enc[10], (__m128d) temp[0], 0); |
|
|
|
ctx->rk_enc[11] = (__m128i)_mm_shuffle_pd((__m128d)temp[0],(__m128d) temp[1], 1); |
|
|
|
ctx->rk_enc[12] = KEYEXP192(temp[0], temp[1], 0x80); |
|
|
|
break; |
|
|
|
} |
|
|
|
case 256: { |
|
|
|
ctx->rk_enc[0] = _mm_loadu_si128((const __m128i*) key); |
|
|
|
ctx->rk_enc[1] = _mm_loadu_si128((const __m128i*) (key+16)); |
|
|
|
ctx->rk_enc[2] = KEYEXP256(ctx->rk_enc[0], ctx->rk_enc[1], 0x01); |
|
|
|
ctx->rk_enc[3] = KEYEXP256_2(ctx->rk_enc[1], ctx->rk_enc[2]); |
|
|
|
ctx->rk_enc[4] = KEYEXP256(ctx->rk_enc[2], ctx->rk_enc[3], 0x02); |
|
|
|
ctx->rk_enc[5] = KEYEXP256_2(ctx->rk_enc[3], ctx->rk_enc[4]); |
|
|
|
ctx->rk_enc[6] = KEYEXP256(ctx->rk_enc[4], ctx->rk_enc[5], 0x04); |
|
|
|
ctx->rk_enc[7] = KEYEXP256_2(ctx->rk_enc[5], ctx->rk_enc[6]); |
|
|
|
ctx->rk_enc[8] = KEYEXP256(ctx->rk_enc[6], ctx->rk_enc[7], 0x08); |
|
|
|
ctx->rk_enc[9] = KEYEXP256_2(ctx->rk_enc[7], ctx->rk_enc[8]); |
|
|
|
ctx->rk_enc[10] = KEYEXP256(ctx->rk_enc[8], ctx->rk_enc[9], 0x10); |
|
|
|
ctx->rk_enc[11] = KEYEXP256_2(ctx->rk_enc[9], ctx->rk_enc[10]); |
|
|
|
ctx->rk_enc[12] = KEYEXP256(ctx->rk_enc[10], ctx->rk_enc[11], 0x20); |
|
|
|
ctx->rk_enc[13] = KEYEXP256_2(ctx->rk_enc[11], ctx->rk_enc[12]); |
|
|
|
ctx->rk_enc[14] = KEYEXP256(ctx->rk_enc[12], ctx->rk_enc[13], 0x40); |
|
|
|
break; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// derive decryption keys
|
|
|
|
for (int i = 1; i < ctx->Nr; ++i) { |
|
|
|
ctx->rk_dec[ctx->Nr - i] = _mm_aesimc_si128(ctx->rk_enc[i]); |
|
|
|
} |
|
|
|
ctx->rk_dec[0] = ctx->rk_enc[ctx->Nr]; |
|
|
|
|
|
|
|
return ctx->Nr; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
static void aes_internal_encrypt (aes_context_t *ctx, const uint8_t pt[16], uint8_t ct[16]) { |
|
|
|
|
|
|
|
__m128i tmp = _mm_loadu_si128((__m128i*)pt); |
|
|
|
|
|
|
|
tmp = _mm_xor_si128 (tmp, ctx->rk_enc[ 0]); |
|
|
|
tmp = _mm_aesenc_si128 (tmp, ctx->rk_enc[ 1]); |
|
|
|
tmp = _mm_aesenc_si128 (tmp, ctx->rk_enc[ 2]); |
|
|
|
tmp = _mm_aesenc_si128 (tmp, ctx->rk_enc[ 3]); |
|
|
|
tmp = _mm_aesenc_si128 (tmp, ctx->rk_enc[ 4]); |
|
|
|
tmp = _mm_aesenc_si128 (tmp, ctx->rk_enc[ 5]); |
|
|
|
tmp = _mm_aesenc_si128 (tmp, ctx->rk_enc[ 6]); |
|
|
|
tmp = _mm_aesenc_si128 (tmp, ctx->rk_enc[ 7]); |
|
|
|
tmp = _mm_aesenc_si128 (tmp, ctx->rk_enc[ 8]); |
|
|
|
tmp = _mm_aesenc_si128 (tmp, ctx->rk_enc[ 9]); |
|
|
|
if(ctx->Nr > 10) { |
|
|
|
tmp = _mm_aesenc_si128 (tmp, ctx->rk_enc[10]); |
|
|
|
tmp = _mm_aesenc_si128 (tmp, ctx->rk_enc[11]); |
|
|
|
if(ctx->Nr > 12) { |
|
|
|
tmp = _mm_aesenc_si128(tmp, ctx->rk_enc[12]); |
|
|
|
tmp = _mm_aesenc_si128(tmp, ctx->rk_enc[13]); |
|
|
|
} |
|
|
|
} |
|
|
|
tmp = _mm_aesenclast_si128(tmp, ctx->rk_enc[ctx->Nr]); |
|
|
|
|
|
|
|
_mm_storeu_si128((__m128i*) ct, tmp); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
static void aes_internal_decrypt (aes_context_t *ctx, const uint8_t ct[16], uint8_t pt[16]) { |
|
|
|
|
|
|
|
__m128i tmp = _mm_loadu_si128((__m128i*)ct); |
|
|
|
|
|
|
|
tmp = _mm_xor_si128 (tmp, ctx->rk_dec[ 0]); |
|
|
|
tmp = _mm_aesdec_si128 (tmp, ctx->rk_dec[ 1]); |
|
|
|
tmp = _mm_aesdec_si128 (tmp, ctx->rk_dec[ 2]); |
|
|
|
tmp = _mm_aesdec_si128 (tmp, ctx->rk_dec[ 3]); |
|
|
|
tmp = _mm_aesdec_si128 (tmp, ctx->rk_dec[ 4]); |
|
|
|
tmp = _mm_aesdec_si128 (tmp, ctx->rk_dec[ 5]); |
|
|
|
tmp = _mm_aesdec_si128 (tmp, ctx->rk_dec[ 6]); |
|
|
|
tmp = _mm_aesdec_si128 (tmp, ctx->rk_dec[ 7]); |
|
|
|
tmp = _mm_aesdec_si128 (tmp, ctx->rk_dec[ 8]); |
|
|
|
tmp = _mm_aesdec_si128 (tmp, ctx->rk_dec[ 9]); |
|
|
|
if(ctx->Nr > 10) { |
|
|
|
tmp = _mm_aesdec_si128 (tmp, ctx->rk_dec[10]); |
|
|
|
tmp = _mm_aesdec_si128 (tmp, ctx->rk_dec[11]); |
|
|
|
if(ctx->Nr > 12) { |
|
|
|
tmp = _mm_aesdec_si128(tmp, ctx->rk_dec[12]); |
|
|
|
tmp = _mm_aesdec_si128(tmp, ctx->rk_dec[13]); |
|
|
|
} |
|
|
|
} |
|
|
|
tmp = _mm_aesdeclast_si128(tmp, ctx->rk_enc[0]); |
|
|
|
|
|
|
|
_mm_storeu_si128((__m128i*) pt, tmp); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// public API
|
|
|
|
|
|
|
|
|
|
|
|
int aes_ecb_decrypt (unsigned char *out, const unsigned char *in, aes_context_t *ctx) { |
|
|
|
|
|
|
|
aes_internal_decrypt(ctx, in, out); |
|
|
|
|
|
|
|
return AES_BLOCK_SIZE; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// not used
|
|
|
|
int aes_ecb_encrypt (unsigned char *out, const unsigned char *in, aes_context_t *ctx) { |
|
|
|
|
|
|
|
aes_internal_encrypt(ctx, in, out); |
|
|
|
|
|
|
|
return AES_BLOCK_SIZE; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
#define fix_xor(target, source) *(uint32_t*)&(target)[0] = *(uint32_t*)&(target)[0] ^ *(uint32_t*)&(source)[0]; *(uint32_t*)&(target)[4] = *(uint32_t*)&(target)[4] ^ *(uint32_t*)&(source)[4]; \ |
|
|
|
*(uint32_t*)&(target)[8] = *(uint32_t*)&(target)[8] ^ *(uint32_t*)&(source)[8]; *(uint32_t*)&(target)[12] = *(uint32_t*)&(target)[12] ^ *(uint32_t*)&(source)[12]; |
|
|
|
|
|
|
|
|
|
|
|
int aes_cbc_encrypt (unsigned char *out, const unsigned char *in, size_t in_len, |
|
|
|
const unsigned char *iv, aes_context_t *ctx) { |
|
|
|
|
|
|
|
uint8_t tmp[AES_BLOCK_SIZE]; |
|
|
|
size_t i; |
|
|
|
size_t n; |
|
|
|
|
|
|
|
memcpy(tmp, iv, AES_BLOCK_SIZE); |
|
|
|
|
|
|
|
n = in_len / AES_BLOCK_SIZE; |
|
|
|
for(i=0; i < n; i++) { |
|
|
|
fix_xor(tmp, &in[i * AES_BLOCK_SIZE]); |
|
|
|
aes_internal_encrypt(ctx, tmp, tmp); |
|
|
|
memcpy(&out[i * AES_BLOCK_SIZE], tmp, AES_BLOCK_SIZE); |
|
|
|
} |
|
|
|
return n * AES_BLOCK_SIZE; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
int aes_cbc_decrypt (unsigned char *out, const unsigned char *in, size_t in_len, |
|
|
|
const unsigned char *iv, aes_context_t *ctx) { |
|
|
|
|
|
|
|
uint8_t tmp[AES_BLOCK_SIZE]; |
|
|
|
uint8_t old[AES_BLOCK_SIZE]; |
|
|
|
size_t i; |
|
|
|
size_t n; |
|
|
|
|
|
|
|
memcpy(tmp, iv, AES_BLOCK_SIZE); |
|
|
|
|
|
|
|
n = in_len / AES_BLOCK_SIZE; |
|
|
|
for(i=0; i < n; i++) { |
|
|
|
memcpy(old, &in[i * AES_BLOCK_SIZE], AES_BLOCK_SIZE); |
|
|
|
aes_internal_decrypt(ctx, &in[i * AES_BLOCK_SIZE], &out[i * AES_BLOCK_SIZE]); |
|
|
|
fix_xor(&out[i * AES_BLOCK_SIZE], tmp); |
|
|
|
memcpy(tmp, old, AES_BLOCK_SIZE); |
|
|
|
} |
|
|
|
|
|
|
|
return n * AES_BLOCK_SIZE; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
int aes_init (const unsigned char *key, size_t key_size, aes_context_t **ctx) { |
|
|
|
|
|
|
|
// allocate context...
|
|
|
|
*ctx = (aes_context_t*) calloc(1, sizeof(aes_context_t)); |
|
|
|
if (!(*ctx)) |
|
|
|
return -1; |
|
|
|
// ...and fill her up
|
|
|
|
|
|
|
|
// initialize data structures
|
|
|
|
|
|
|
|
// check key size and make key size (given in bytes) dependant settings
|
|
|
|
switch(key_size) { |
|
|
|
case AES128_KEY_BYTES: // 128 bit key size
|
|
|
|
break; |
|
|
|
case AES192_KEY_BYTES: // 192 bit key size
|
|
|
|
break; |
|
|
|
case AES256_KEY_BYTES: // 256 bit key size
|
|
|
|
break; |
|
|
|
default: |
|
|
|
traceEvent(TRACE_ERROR, "aes_init invalid key size %u\n", key_size); |
|
|
|
return -1; |
|
|
|
} |
|
|
|
|
|
|
|
// key materiel handling
|
|
|
|
aes_internal_key_setup ( *ctx, key, 8 * key_size); |
|
|
|
return 0; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
#else // plain C --------------------------------------------------------------------------
|
|
|
|
|
|
|
|
// rijndael-alg-fst.c version 3.0 (December 2000)
|
|
|
@ -624,6 +902,7 @@ static const uint32_t rcon[] = { |
|
|
|
* @return the number of rounds for the given cipher key size. |
|
|
|
*/ |
|
|
|
static int aes_internal_key_setup_enc (uint32_t rk[/*4*(Nr + 1)*/], const uint8_t cipherKey[], int keyBits) { |
|
|
|
|
|
|
|
int i = 0; |
|
|
|
uint32_t temp; |
|
|
|
|
|
|
@ -998,31 +1277,69 @@ int aes_deinit (aes_context_t *ctx) { |
|
|
|
#endif |
|
|
|
|
|
|
|
return 0; |
|
|
|
} */ |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
#ifdef TEST_AES |
|
|
|
int main () { |
|
|
|
|
|
|
|
uint32_t rk[60]; |
|
|
|
uint8_t key[32] = {0}; |
|
|
|
aes_context_t *ctx; |
|
|
|
|
|
|
|
|
|
|
|
// *ctx = malloc(sizeof(aes_context_t));
|
|
|
|
|
|
|
|
|
|
|
|
// uint8_t key[32] = {0};
|
|
|
|
// 128 bit key 0 --> 0336763e966d92595a567cc9ce537f5e
|
|
|
|
// uint8_t pt[16] = {0xf3, 0x44, 0x81, 0xec, 0x3c, 0xc6, 0x27, 0xba,
|
|
|
|
// 0xcd, 0x5d, 0xc3, 0xfb, 0x08, 0xf2, 0x73, 0xe6 };
|
|
|
|
uint8_t pt[16] = {0x01, 0x47, 0x30, 0xf8, 0x0a, 0xc6, 0x25, 0xfe, |
|
|
|
0x84, 0xf0, 0x26, 0xc6, 0x0b, 0xfd, 0x54, 0x7d }; |
|
|
|
|
|
|
|
// 256 bit key 0 --> 5c9d844ed46f9885085e5d6a4f94c7d7
|
|
|
|
// uint8_t pt[16] = {0x01, 0x47, 0x30, 0xf8, 0x0a, 0xc6, 0x25, 0xfe,
|
|
|
|
// 0x84, 0xf0, 0x26, 0xc6, 0x0b, 0xfd, 0x54, 0x7d };
|
|
|
|
|
|
|
|
uint8_t pt[16] = {0}; |
|
|
|
// 0 pt --> 6d251e6944b051e04eaa6fb4dbf78465
|
|
|
|
uint8_t key[16] = {0x10, 0xa5, 0x88, 0x69, 0xd7, 0x4b, 0xe5, 0xa3, |
|
|
|
0x74, 0xcf, 0x86, 0x7c, 0xfb, 0x47, 0x38, 0x59 }; |
|
|
|
|
|
|
|
uint8_t ct[16] = {0}; |
|
|
|
int i; |
|
|
|
|
|
|
|
i = aes_internal_key_setup_enc(rk/*[4*(Nr + 1)]*/, key, 8 * sizeof(key)); |
|
|
|
printf ("i = %u\n",i); |
|
|
|
aes_internal_encrypt(rk, i, pt, ct); |
|
|
|
i = aes_internal_key_setup_dec(rk/*[4*(Nr + 1)]*/, key, 8 * sizeof(key)); |
|
|
|
// aes_internal_key_setup (ctx, key, 8 * sizeof(key));
|
|
|
|
aes_init (key, sizeof(key), &ctx); |
|
|
|
|
|
|
|
printf ("Nr = %u\n",(ctx)->Nr); |
|
|
|
memset (pt, 0, 16); |
|
|
|
aes_internal_decrypt(rk, i, ct, pt); |
|
|
|
|
|
|
|
|
|
|
|
for(i = 0; i < 16; i++) |
|
|
|
printf ("%02x",pt[i]); |
|
|
|
printf ("\n"); |
|
|
|
printf ("--- pt\n"); |
|
|
|
|
|
|
|
aes_internal_encrypt((ctx), pt, ct); |
|
|
|
memset (pt, 4, 16); |
|
|
|
|
|
|
|
for(i = 0; i < 16; i++) |
|
|
|
printf ("%02x",ct[i]); |
|
|
|
printf ("--- ct\n"); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
printf ("Nr = %u\n",(ctx)->Nr); |
|
|
|
printf ("Nr = %u\n",(ctx)->Nr); |
|
|
|
|
|
|
|
aes_internal_decrypt((ctx), ct, pt); |
|
|
|
memset (ct, 9, 16); |
|
|
|
for(i = 0; i < 16; i++) |
|
|
|
printf ("%02x",pt[i]); |
|
|
|
printf ("--- pt\n"); |
|
|
|
|
|
|
|
aes_internal_encrypt((ctx), pt, ct); |
|
|
|
|
|
|
|
for(i = 0; i < 16; i++) |
|
|
|
printf ("%02x",ct[i]); |
|
|
|
printf ("--- ct\n"); |
|
|
|
} |
|
|
|
#endif |
|
|
|
*/ |
|
|
|