|
@ -1,5 +1,5 @@ |
|
|
/**
|
|
|
/**
|
|
|
* (C) 2007-20 - ntop.org and contributors |
|
|
* (C) 2007-21 - ntop.org and contributors |
|
|
* |
|
|
* |
|
|
* This program is free software; you can redistribute it and/or modify |
|
|
* This program is free software; you can redistribute it and/or modify |
|
|
* it under the terms of the GNU General Public License as published by |
|
|
* it under the terms of the GNU General Public License as published by |
|
@ -17,418 +17,208 @@ |
|
|
*/ |
|
|
*/ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// taken from https://github.com/Logan007/pearson
|
|
|
// taken from https://github.com/Logan007/pearsonB
|
|
|
// This is free and unencumbered software released into the public domain.
|
|
|
// this is free and unencumbered software released into the public domain
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include "pearson.h" |
|
|
#include "pearson.h" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// AES S-Box table -- allows for eventually supported hardware accelerated look-up
|
|
|
// Christopher Wellons' triple32 from https://github.com/skeeto/hash-prospector
|
|
|
static const uint8_t t[256] = { |
|
|
// published under The Unlicense
|
|
|
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, |
|
|
#define permute32(in) \ |
|
|
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, |
|
|
in ^= in >> 17; \ |
|
|
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, |
|
|
in *= 0xed5ad4bb; \ |
|
|
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, |
|
|
in ^= in >> 11; \ |
|
|
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, |
|
|
in *= 0xac4c1b51; \ |
|
|
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, |
|
|
in ^= in >> 15; \ |
|
|
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, |
|
|
in *= 0x31848bab; \ |
|
|
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, |
|
|
in ^= in >> 14 |
|
|
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, |
|
|
|
|
|
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, |
|
|
|
|
|
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, |
|
|
|
|
|
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, |
|
|
|
|
|
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, |
|
|
|
|
|
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, |
|
|
|
|
|
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, |
|
|
|
|
|
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; |
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
|
// table as in original paper "Fast Hashing of Variable-Length Text Strings" by Peter K. Pearson
|
|
|
|
|
|
// as published in The Communications of the ACM Vol.33, No. 6 (June 1990), pp. 677-680.
|
|
|
|
|
|
static const uint8_t t[256] = { |
|
|
|
|
|
0x01, 0x57, 0x31, 0x0c, 0xb0, 0xb2, 0x66, 0xa6, 0x79, 0xc1, 0x06, 0x54, 0xf9, 0xe6, 0x2c, 0xa3, |
|
|
|
|
|
0x0e, 0xc5, 0xd5, 0xb5, 0xa1, 0x55, 0xda, 0x50, 0x40, 0xef, 0x18, 0xe2, 0xec, 0x8e, 0x26, 0xc8, |
|
|
|
|
|
0x6e, 0xb1, 0x68, 0x67, 0x8d, 0xfd, 0xff, 0x32, 0x4d, 0x65, 0x51, 0x12, 0x2d, 0x60, 0x1f, 0xde, |
|
|
|
|
|
0x19, 0x6b, 0xbe, 0x46, 0x56, 0xed, 0xf0, 0x22, 0x48, 0xf2, 0x14, 0xd6, 0xf4, 0xe3, 0x95, 0xeb, |
|
|
|
|
|
0x61, 0xea, 0x39, 0x16, 0x3c, 0xfa, 0x52, 0xaf, 0xd0, 0x05, 0x7f, 0xc7, 0x6f, 0x3e, 0x87, 0xf8, |
|
|
|
|
|
0xae, 0xa9, 0xd3, 0x3a, 0x42, 0x9a, 0x6a, 0xc3, 0xf5, 0xab, 0x11, 0xbb, 0xb6, 0xb3, 0x00, 0xf3, |
|
|
|
|
|
0x84, 0x38, 0x94, 0x4b, 0x80, 0x85, 0x9e, 0x64, 0x82, 0x7e, 0x5b, 0x0d, 0x99, 0xf6, 0xd8, 0xdb, |
|
|
|
|
|
0x77, 0x44, 0xdf, 0x4e, 0x53, 0x58, 0xc9, 0x63, 0x7a, 0x0b, 0x5c, 0x20, 0x88, 0x72, 0x34, 0x0a, |
|
|
|
|
|
0x8a, 0x1e, 0x30, 0xb7, 0x9c, 0x23, 0x3d, 0x1a, 0x8f, 0x4a, 0xfb, 0x5e, 0x81, 0xa2, 0x3f, 0x98, |
|
|
|
|
|
0xaa, 0x07, 0x73, 0xa7, 0xf1, 0xce, 0x03, 0x96, 0x37, 0x3b, 0x97, 0xdc, 0x5a, 0x35, 0x17, 0x83, |
|
|
|
|
|
0x7d, 0xad, 0x0f, 0xee, 0x4f, 0x5f, 0x59, 0x10, 0x69, 0x89, 0xe1, 0xe0, 0xd9, 0xa0, 0x25, 0x7b, |
|
|
|
|
|
0x76, 0x49, 0x02, 0x9d, 0x2e, 0x74, 0x09, 0x91, 0x86, 0xe4, 0xcf, 0xd4, 0xca, 0xd7, 0x45, 0xe5, |
|
|
|
|
|
0x1b, 0xbc, 0x43, 0x7c, 0xa8, 0xfc, 0x2a, 0x04, 0x1d, 0x6c, 0x15, 0xf7, 0x13, 0xcd, 0x27, 0xcb, |
|
|
|
|
|
0xe9, 0x28, 0xba, 0x93, 0xc6, 0xc0, 0x9b, 0x21, 0xa4, 0xbf, 0x62, 0xcc, 0xa5, 0xb4, 0x75, 0x4c, |
|
|
|
|
|
0x8c, 0x24, 0xd2, 0xac, 0x29, 0x36, 0x9f, 0x08, 0xb9, 0xe8, 0x71, 0xc4, 0xe7, 0x2f, 0x92, 0x78, |
|
|
|
|
|
0x33, 0x41, 0x1c, 0x90, 0xfe, 0xdd, 0x5d, 0xbd, 0xc2, 0x8b, 0x70, 0x2b, 0x47, 0x6d, 0xb8, 0xd1 }; |
|
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if defined (__AES__) && defined (__SSSE3__) // AES-NI & SSSE3 ----------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// David Stafford's Mix13 from http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html
|
|
|
|
|
|
// the author clarified via eMail that this of his work is released to the public domain
|
|
|
|
|
|
#define permute64(in) \ |
|
|
|
|
|
in ^= (in >> 30); \ |
|
|
|
|
|
in *= 0xbf58476d1ce4e5b9; \ |
|
|
|
|
|
in ^= (in >> 27); \ |
|
|
|
|
|
in *= 0x94d049bb133111eb; \ |
|
|
|
|
|
in ^= (in >> 31) |
|
|
|
|
|
|
|
|
void pearson_hash_256 (uint8_t *out, const uint8_t *in, size_t len) { |
|
|
#define dec1(in) \ |
|
|
|
|
|
in-- |
|
|
size_t i; |
|
|
|
|
|
|
|
|
|
|
|
uint8_t upper[8] = { 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 }; |
|
|
|
|
|
uint8_t lower[8] = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00 }; |
|
|
|
|
|
|
|
|
|
|
|
uint64_t upper_hash_mask = *(uint64_t*)&upper; |
|
|
|
|
|
uint64_t lower_hash_mask = *(uint64_t*)&lower; |
|
|
|
|
|
|
|
|
|
|
|
__m128i tmp = _mm_set1_epi8(0x10); |
|
|
|
|
|
|
|
|
|
|
|
__m128i hash_mask = _mm_set_epi64((__m64)lower_hash_mask, (__m64)upper_hash_mask); |
|
|
|
|
|
__m128i high_hash_mask = _mm_xor_si128(tmp, hash_mask); |
|
|
|
|
|
__m128i hash= _mm_setzero_si128(); |
|
|
|
|
|
__m128i high_hash= _mm_setzero_si128(); |
|
|
|
|
|
|
|
|
|
|
|
__m128i ZERO = _mm_setzero_si128(); |
|
|
|
|
|
__m128i ISOLATE_SBOX_MASK = _mm_set_epi32(0x0306090C, 0x0F020508, 0x0B0E0104, 0x070A0D00); |
|
|
|
|
|
|
|
|
|
|
|
for(i = 0; i < len; i++) { |
|
|
|
|
|
// broadcast the character
|
|
|
|
|
|
__m128i cc = _mm_set1_epi8(in[i]); |
|
|
|
|
|
// xor into hash
|
|
|
|
|
|
hash = _mm_xor_si128(hash, cc); |
|
|
|
|
|
high_hash = _mm_xor_si128(high_hash, cc); |
|
|
|
|
|
// make them different permutations
|
|
|
|
|
|
hash = _mm_xor_si128(hash, hash_mask); |
|
|
|
|
|
high_hash = _mm_xor_si128(high_hash, high_hash_mask); |
|
|
|
|
|
// table lookup
|
|
|
|
|
|
hash = _mm_shuffle_epi8(hash, ISOLATE_SBOX_MASK); // re-order along AES round
|
|
|
|
|
|
high_hash = _mm_shuffle_epi8(high_hash, ISOLATE_SBOX_MASK); // re-order along AES round
|
|
|
|
|
|
hash = _mm_aesenclast_si128(hash, ZERO); |
|
|
|
|
|
high_hash = _mm_aesenclast_si128(high_hash, ZERO); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// store output
|
|
|
|
|
|
_mm_store_si128((__m128i*)out , high_hash); |
|
|
|
|
|
_mm_store_si128((__m128i*)&out[16] , hash); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void pearson_hash_128 (uint8_t *out, const uint8_t *in, size_t len) { |
|
|
#define dec2(in) \ |
|
|
|
|
|
dec1(in); \ |
|
|
|
|
|
dec1(in) |
|
|
|
|
|
|
|
|
size_t i; |
|
|
#define dec3(in) \ |
|
|
|
|
|
dec2(in); \ |
|
|
|
|
|
dec1(in) |
|
|
|
|
|
|
|
|
uint8_t upper[8] = { 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 }; |
|
|
#define dec4(in) \ |
|
|
uint8_t lower[8] = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00 }; |
|
|
dec3(in); \ |
|
|
|
|
|
dec1(in) |
|
|
|
|
|
|
|
|
uint64_t upper_hash_mask = *(uint64_t*)&upper; |
|
|
#define hash_round(hash, in, part) \ |
|
|
uint64_t lower_hash_mask = *(uint64_t*)&lower; |
|
|
hash##part ^= in; \ |
|
|
|
|
|
dec##part(hash##part); \ |
|
|
|
|
|
permute64(hash##part) |
|
|
|
|
|
|
|
|
__m128i hash_mask = _mm_set_epi64((__m64)lower_hash_mask, (__m64)upper_hash_mask); |
|
|
|
|
|
__m128i hash = _mm_setzero_si128(); |
|
|
|
|
|
|
|
|
|
|
|
__m128i ZERO = _mm_setzero_si128(); |
|
|
void pearson_hash_256 (uint8_t *out, const uint8_t *in, size_t len) { |
|
|
__m128i ISOLATE_SBOX_MASK = _mm_set_epi32(0x0306090C, 0x0F020508, 0x0B0E0104, 0x070A0D00); |
|
|
|
|
|
|
|
|
|
|
|
for(i = 0; i < len; i++) { |
|
|
uint64_t *current; |
|
|
// broadcast the character
|
|
|
current = (uint64_t*)in; |
|
|
__m128i cc = _mm_set1_epi8(in[i]); |
|
|
uint64_t org_len = len; |
|
|
// xor into hash
|
|
|
uint64_t hash1 = 0; |
|
|
hash = _mm_xor_si128(hash, cc); |
|
|
uint64_t hash2 = 0; |
|
|
// make them different permutations
|
|
|
uint64_t hash3 = 0; |
|
|
hash = _mm_xor_si128(hash, hash_mask); |
|
|
uint64_t hash4 = 0; |
|
|
// table lookup
|
|
|
|
|
|
hash = _mm_shuffle_epi8(hash, ISOLATE_SBOX_MASK); // re-order along AES round
|
|
|
while (len > 7) { |
|
|
hash = _mm_aesenclast_si128(hash, ZERO); |
|
|
// digest words little endian first
|
|
|
|
|
|
hash_round(hash, le64toh(*current), 1); |
|
|
|
|
|
hash_round(hash, le64toh(*current), 2); |
|
|
|
|
|
hash_round(hash, le64toh(*current), 3); |
|
|
|
|
|
hash_round(hash, le64toh(*current), 4); |
|
|
|
|
|
|
|
|
|
|
|
current++; |
|
|
|
|
|
len-=8; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
// store output
|
|
|
// handle the rest
|
|
|
_mm_store_si128((__m128i*)out , hash); |
|
|
hash1 = ~hash1; |
|
|
} |
|
|
hash2 = ~hash2; |
|
|
|
|
|
hash3 = ~hash3; |
|
|
|
|
|
hash4 = ~hash4; |
|
|
uint64_t pearson_hash_64 (const uint8_t *in, size_t len) { |
|
|
|
|
|
|
|
|
while(len) { |
|
|
size_t i; |
|
|
// byte-wise, no endianess
|
|
|
|
|
|
hash_round(hash, *(uint8_t*)current, 1); |
|
|
__m128i hash_mask = _mm_cvtsi64_si128(0x0706050403020100); |
|
|
hash_round(hash, *(uint8_t*)current, 2); |
|
|
|
|
|
hash_round(hash, *(uint8_t*)current, 3); |
|
|
__m128i hash = _mm_setzero_si128(); |
|
|
hash_round(hash, *(uint8_t*)current, 4); |
|
|
|
|
|
|
|
|
__m128i ZERO = _mm_setzero_si128(); |
|
|
current = (uint64_t*)((uint8_t*)current + 1); |
|
|
__m128i ISOLATE_SBOX_MASK = _mm_set_epi32(0x0306090C, 0x0F020508, 0x0B0E0104, 0x070A0D00); |
|
|
len--; |
|
|
|
|
|
|
|
|
for(i = 0; i < len; i++) { |
|
|
|
|
|
// broadcast the character
|
|
|
|
|
|
__m128i cc = _mm_set1_epi8(in[i]); |
|
|
|
|
|
// xor into hash
|
|
|
|
|
|
hash = _mm_xor_si128(hash, cc); |
|
|
|
|
|
// make them different permutations
|
|
|
|
|
|
hash = _mm_xor_si128(hash, hash_mask); |
|
|
|
|
|
// table lookup
|
|
|
|
|
|
hash = _mm_shuffle_epi8(hash, ISOLATE_SBOX_MASK); // re-order along AES round
|
|
|
|
|
|
hash = _mm_aesenclast_si128(hash, ZERO); |
|
|
|
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
// return lower 64 bits
|
|
|
// digest length
|
|
|
return _mm_cvtsi128_si64(hash); |
|
|
hash1 = ~hash1; |
|
|
} |
|
|
hash2 = ~hash2; |
|
|
|
|
|
hash3 = ~hash3; |
|
|
|
|
|
hash4 = ~hash4; |
|
|
|
|
|
|
|
|
uint32_t pearson_hash_32 (const uint8_t *in, size_t len) { |
|
|
hash_round(hash, org_len, 1); |
|
|
|
|
|
hash_round(hash, org_len, 2); |
|
|
|
|
|
hash_round(hash, org_len, 3); |
|
|
|
|
|
hash_round(hash, org_len, 4); |
|
|
|
|
|
|
|
|
// return lower 32 bits (type casted)
|
|
|
// hash string is stored big endian, the natural way to read
|
|
|
return pearson_hash_64(in, len); |
|
|
uint64_t *o; |
|
|
|
|
|
o = (uint64_t*)out; |
|
|
|
|
|
*o = htobe64(hash4); |
|
|
|
|
|
o++; |
|
|
|
|
|
*o = htobe64(hash3); |
|
|
|
|
|
o++; |
|
|
|
|
|
*o = htobe64(hash2); |
|
|
|
|
|
o++; |
|
|
|
|
|
*o = htobe64(hash1); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uint16_t pearson_hash_16 (const uint8_t *in, size_t len) { |
|
|
void pearson_hash_128 (uint8_t *out, const uint8_t *in, size_t len) { |
|
|
|
|
|
|
|
|
// return lower 16 bits (type casted)
|
|
|
|
|
|
return pearson_hash_64(in, len); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uint64_t *current; |
|
|
|
|
|
current = (uint64_t*)in; |
|
|
|
|
|
uint64_t org_len = len; |
|
|
|
|
|
uint64_t hash1 = 0; |
|
|
|
|
|
uint64_t hash2 = 0; |
|
|
|
|
|
|
|
|
#else // plain C --------------------------------------------------------------------------------------------------
|
|
|
while (len > 7) { |
|
|
|
|
|
// digest words little endian first
|
|
|
|
|
|
hash_round(hash, le64toh(*current), 1); |
|
|
|
|
|
hash_round(hash, le64toh(*current), 2); |
|
|
|
|
|
|
|
|
|
|
|
current++; |
|
|
|
|
|
len-=8; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
static uint16_t t16[65536]; // 16-bit look-up table
|
|
|
// handle the rest
|
|
|
|
|
|
hash1 = ~hash1; |
|
|
|
|
|
hash2 = ~hash2; |
|
|
|
|
|
|
|
|
#define ROR64(x,r) (((x)>>(r))|((x)<<(64-(r)))) |
|
|
while(len) { |
|
|
#define ROR32(x,r) (((x)>>(r))|((x)<<(32-(r)))) |
|
|
// byte-wise, no endianess
|
|
|
|
|
|
hash_round(hash, *(uint8_t*)current, 1); |
|
|
|
|
|
hash_round(hash, *(uint8_t*)current, 2); |
|
|
|
|
|
|
|
|
|
|
|
current = (uint64_t*)((uint8_t*)current + 1); |
|
|
|
|
|
len--; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
void pearson_hash_256 (uint8_t *out, const uint8_t *in, size_t len) { |
|
|
// digest length
|
|
|
|
|
|
hash1 = ~hash1; |
|
|
|
|
|
hash2 = ~hash2; |
|
|
|
|
|
|
|
|
size_t i; |
|
|
hash_round(hash, org_len, 1); |
|
|
/* initial values - astonishingly, assembling using SHIFTs and ORs (in register)
|
|
|
hash_round(hash, org_len, 2); |
|
|
* works faster on well pipelined CPUs than loading the 64-bit value from memory. |
|
|
|
|
|
* however, there is one advantage to loading from memory: as we also store back to |
|
|
|
|
|
* memory at the end, we do not need to care about endianess! */ |
|
|
|
|
|
uint8_t upper[8] = { 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 }; |
|
|
|
|
|
uint8_t lower[8] = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00 }; |
|
|
|
|
|
|
|
|
|
|
|
uint64_t upper_hash_mask = *(uint64_t*)&upper; |
|
|
|
|
|
uint64_t lower_hash_mask = *(uint64_t*)&lower; |
|
|
|
|
|
uint64_t high_upper_hash_mask = upper_hash_mask + 0x1010101010101010; |
|
|
|
|
|
uint64_t high_lower_hash_mask = lower_hash_mask + 0x1010101010101010; |
|
|
|
|
|
|
|
|
|
|
|
uint64_t upper_hash = 0; |
|
|
|
|
|
uint64_t lower_hash = 0; |
|
|
|
|
|
uint64_t high_upper_hash = 0; |
|
|
|
|
|
uint64_t high_lower_hash = 0; |
|
|
|
|
|
|
|
|
|
|
|
for(i = 0; i < len; i++) { |
|
|
|
|
|
// broadcast the character
|
|
|
|
|
|
uint64_t c = (uint8_t)in[i]; |
|
|
|
|
|
c |= c << 8; |
|
|
|
|
|
c |= c << 16; |
|
|
|
|
|
c |= c << 32; |
|
|
|
|
|
// xor into hash & make them different permutations
|
|
|
|
|
|
upper_hash ^= c ^ upper_hash_mask; |
|
|
|
|
|
lower_hash ^= c ^ lower_hash_mask; |
|
|
|
|
|
high_upper_hash ^= c ^ high_upper_hash_mask; |
|
|
|
|
|
high_lower_hash ^= c ^ high_lower_hash_mask; |
|
|
|
|
|
// table lookup
|
|
|
|
|
|
uint64_t h = 0; |
|
|
|
|
|
uint16_t x; |
|
|
|
|
|
x = upper_hash; x = t16[x]; upper_hash >>= 16; h |= x; h=ROR64(h,16); |
|
|
|
|
|
x = upper_hash; x = t16[x]; upper_hash >>= 16; h |= x; h=ROR64(h,16); |
|
|
|
|
|
x = upper_hash; x = t16[x]; upper_hash >>= 16; h |= x; h=ROR64(h,16); |
|
|
|
|
|
x = upper_hash; x = t16[x]; upper_hash >>= 16; h |= x; h=ROR64(h,16); |
|
|
|
|
|
upper_hash = h; |
|
|
|
|
|
|
|
|
|
|
|
h = 0; |
|
|
|
|
|
x = lower_hash; x = t16[x]; lower_hash >>= 16; h |= x; h=ROR64(h,16); |
|
|
|
|
|
x = lower_hash; x = t16[x]; lower_hash >>= 16; h |= x; h=ROR64(h,16); |
|
|
|
|
|
x = lower_hash; x = t16[x]; lower_hash >>= 16; h |= x; h=ROR64(h,16); |
|
|
|
|
|
x = lower_hash; x = t16[x]; lower_hash >>= 16; h |= x; h=ROR64(h,16); |
|
|
|
|
|
lower_hash = h; |
|
|
|
|
|
|
|
|
|
|
|
h = 0; |
|
|
|
|
|
x = high_upper_hash; x = t16[x]; high_upper_hash >>= 16; h |= x; h=ROR64(h,16); |
|
|
|
|
|
x = high_upper_hash; x = t16[x]; high_upper_hash >>= 16; h |= x; h=ROR64(h,16); |
|
|
|
|
|
x = high_upper_hash; x = t16[x]; high_upper_hash >>= 16; h |= x; h=ROR64(h,16); |
|
|
|
|
|
x = high_upper_hash; x = t16[x]; high_upper_hash >>= 16; h |= x; h=ROR64(h,16); |
|
|
|
|
|
high_upper_hash = h; |
|
|
|
|
|
|
|
|
|
|
|
h = 0; |
|
|
|
|
|
x = high_lower_hash; x = t16[x]; high_lower_hash >>= 16; h |= x; h=ROR64(h,16); |
|
|
|
|
|
x = high_lower_hash; x = t16[x]; high_lower_hash >>= 16; h |= x; h=ROR64(h,16); |
|
|
|
|
|
x = high_lower_hash; x = t16[x]; high_lower_hash >>= 16; h |= x; h=ROR64(h,16); |
|
|
|
|
|
x = high_lower_hash; x = t16[x]; high_lower_hash >>= 16; h |= x; h=ROR64(h,16); |
|
|
|
|
|
high_lower_hash = h; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// store output
|
|
|
// hash string is stored big endian, the natural way to read
|
|
|
uint64_t *o; |
|
|
uint64_t *o; |
|
|
o = (uint64_t*)&out[0]; |
|
|
o = (uint64_t*)out; |
|
|
*o = high_upper_hash; |
|
|
*o = htobe64(hash2); |
|
|
o = (uint64_t*)&out[8]; |
|
|
o++; |
|
|
*o = high_lower_hash; |
|
|
*o = htobe64(hash1); |
|
|
o = (uint64_t*)&out[16]; |
|
|
|
|
|
*o = upper_hash; |
|
|
|
|
|
o = (uint64_t*)&out[24]; |
|
|
|
|
|
*o = lower_hash; |
|
|
|
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void pearson_hash_128 (uint8_t *out, const uint8_t *in, size_t len) { |
|
|
uint64_t pearson_hash_64 (const uint8_t *in, size_t len) { |
|
|
|
|
|
|
|
|
size_t i; |
|
|
uint64_t *current; |
|
|
/* initial values - astonishingly, assembling using SHIFTs and ORs (in register)
|
|
|
current = (uint64_t*)in; |
|
|
* works faster on well pipelined CPUs than loading the 64-bit value from memory. |
|
|
uint64_t org_len = len; |
|
|
* however, there is one advantage to loading from memory: as we also store back to |
|
|
uint64_t hash1 = 0; |
|
|
* memory at the end, we do not need to care about endianess! */ |
|
|
|
|
|
uint8_t upper[8] = { 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 }; |
|
|
|
|
|
uint8_t lower[8] = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00 }; |
|
|
|
|
|
|
|
|
|
|
|
uint64_t upper_hash_mask = *(uint64_t*)&upper; |
|
|
|
|
|
uint64_t lower_hash_mask = *(uint64_t*)&lower; |
|
|
|
|
|
|
|
|
|
|
|
uint64_t upper_hash = 0; |
|
|
|
|
|
uint64_t lower_hash = 0; |
|
|
|
|
|
|
|
|
|
|
|
for(i = 0; i < len; i++) { |
|
|
|
|
|
// broadcast the character
|
|
|
|
|
|
uint64_t c = (uint8_t)in[i]; |
|
|
|
|
|
c |= c << 8; |
|
|
|
|
|
c |= c << 16; |
|
|
|
|
|
c |= c << 32; |
|
|
|
|
|
// xor into hash, make them different permutations
|
|
|
|
|
|
upper_hash ^= c ^ upper_hash_mask; |
|
|
|
|
|
lower_hash ^= c ^ lower_hash_mask; |
|
|
|
|
|
// table lookup
|
|
|
|
|
|
uint64_t h = 0; |
|
|
|
|
|
uint16_t x; |
|
|
|
|
|
x = upper_hash; x = t16[x]; upper_hash >>= 16; h |= x; h=ROR64(h,16); |
|
|
|
|
|
x = upper_hash; x = t16[x]; upper_hash >>= 16; h |= x; h=ROR64(h,16); |
|
|
|
|
|
x = upper_hash; x = t16[x]; upper_hash >>= 16; h |= x; h=ROR64(h,16); |
|
|
|
|
|
x = upper_hash; x = t16[x]; upper_hash >>= 16; h |= x; h=ROR64(h,16); |
|
|
|
|
|
upper_hash = h; |
|
|
|
|
|
|
|
|
|
|
|
h = 0; |
|
|
|
|
|
x = lower_hash; x = t16[x]; lower_hash >>= 16; h |= x; h=ROR64(h,16); |
|
|
|
|
|
x = lower_hash; x = t16[x]; lower_hash >>= 16; h |= x; h=ROR64(h,16); |
|
|
|
|
|
x = lower_hash; x = t16[x]; lower_hash >>= 16; h |= x; h=ROR64(h,16); |
|
|
|
|
|
x = lower_hash; x = t16[x]; lower_hash >>= 16; h |= x; h=ROR64(h,16); |
|
|
|
|
|
lower_hash = h; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// store output
|
|
|
while(len > 7) { |
|
|
uint64_t *o; |
|
|
// digest words little endian first
|
|
|
o = (uint64_t*)&out[0]; |
|
|
hash_round(hash, le64toh(*current), 1); |
|
|
*o = upper_hash; |
|
|
|
|
|
o = (uint64_t*)&out[8]; |
|
|
|
|
|
*o = lower_hash; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
current++; |
|
|
|
|
|
len-=8; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
// 64-bit hash: the return value has to be interpreted as uint64_t and
|
|
|
// handle the rest
|
|
|
// follows machine-specific endianess in memory
|
|
|
hash1 = ~hash1; |
|
|
uint64_t pearson_hash_64 (const uint8_t *in, size_t len) { |
|
|
while(len) { |
|
|
|
|
|
// byte-wise, no endianess
|
|
|
|
|
|
hash_round(hash, *(uint8_t*)current, 1); |
|
|
|
|
|
|
|
|
size_t i; |
|
|
current = (uint64_t*)((uint8_t*)current + 1); |
|
|
uint64_t hash_mask = 0x0706050403020100; |
|
|
len--; |
|
|
uint64_t hash = 0; |
|
|
|
|
|
|
|
|
|
|
|
uint32_t h1 = 0; |
|
|
|
|
|
uint32_t h2 = 0; |
|
|
|
|
|
uint32_t hash1 = hash; |
|
|
|
|
|
uint32_t hash2 = (hash >> 32); |
|
|
|
|
|
uint8_t x = 0; |
|
|
|
|
|
uint8_t y = 0; |
|
|
|
|
|
|
|
|
|
|
|
for(i = 0; i < len; i++) { |
|
|
|
|
|
// broadcast the character
|
|
|
|
|
|
uint64_t c = (uint8_t)in[i]; |
|
|
|
|
|
c |= c << 8; |
|
|
|
|
|
c |= c << 16; |
|
|
|
|
|
c |= c << 32; |
|
|
|
|
|
// into hash, make them different permutations
|
|
|
|
|
|
hash ^= c ^ hash_mask; |
|
|
|
|
|
// table lookup
|
|
|
|
|
|
x = hash1; x = t[x]; hash1 >>= 8; h1 = x; h1 = ROR32 (h1, 8); |
|
|
|
|
|
x = hash1; x = t[x]; hash1 >>= 8; h1 |= x; h1 = ROR32 (h1, 8); |
|
|
|
|
|
x = hash1; x = t[x]; hash1 >>= 8; h1 |= x; h1 = ROR32 (h1, 8); |
|
|
|
|
|
x = hash1; x = t[x]; ; h1 |= x; h1 = ROR32 (h1, 8); |
|
|
|
|
|
hash1 = h1; |
|
|
|
|
|
|
|
|
|
|
|
y = hash2; y = t[y]; hash2 >>= 8; h2 = y; h2 = ROR32 (h2, 8); |
|
|
|
|
|
y = hash2; y = t[y]; hash2 >>= 8; h2 |= y; h2 = ROR32 (h2, 8); |
|
|
|
|
|
y = hash2; y = t[y]; hash2 >>= 8; h2 |= y; h2 = ROR32 (h2, 8); |
|
|
|
|
|
y = hash2; y = t[y]; ; h2 |= y; h2 = ROR32 (h2, 8); |
|
|
|
|
|
hash2 = h2; |
|
|
|
|
|
hash = h1 | ((uint64_t)h2 << 32); |
|
|
|
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
// return value
|
|
|
// digest length
|
|
|
return hash; |
|
|
hash1 = ~hash1; |
|
|
|
|
|
hash_round(hash, org_len, 1); |
|
|
|
|
|
|
|
|
|
|
|
// caller is responsible for storing it big endian to memory (if ever)
|
|
|
|
|
|
return hash1; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// 32-bit hash: the return value has to be interpreted as uint32_t and
|
|
|
|
|
|
// follows machine-specific endianess in memory
|
|
|
|
|
|
uint32_t pearson_hash_32 (const uint8_t *in, size_t len) { |
|
|
uint32_t pearson_hash_32 (const uint8_t *in, size_t len) { |
|
|
|
|
|
|
|
|
size_t i; |
|
|
return pearson_hash_64(in, len); |
|
|
uint32_t hash = 0; |
|
|
|
|
|
uint32_t hash_mask = 0x03020100; |
|
|
|
|
|
|
|
|
|
|
|
for(i = 0; i < len; i++) { |
|
|
|
|
|
// broadcast the character
|
|
|
|
|
|
uint32_t c = (uint8_t)in[i]; |
|
|
|
|
|
c |= c << 8; |
|
|
|
|
|
c |= c << 16; |
|
|
|
|
|
// xor into hash, make them different permutations
|
|
|
|
|
|
hash ^= c ^ hash_mask; |
|
|
|
|
|
// table lookup
|
|
|
|
|
|
uint32_t h = 0; |
|
|
|
|
|
uint8_t x; |
|
|
|
|
|
x = hash; x = t[x]; hash >>= 8; h |= x; h=ROR32(h,8); |
|
|
|
|
|
x = hash; x = t[x]; hash >>= 8; h |= x; h=ROR32(h,8); |
|
|
|
|
|
x = hash; x = t[x]; hash >>= 8; h |= x; h=ROR32(h,8); |
|
|
|
|
|
x = hash; x = t[x]; hash >>= 8; h |= x; h=ROR32(h,8); |
|
|
|
|
|
hash = h; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// return value
|
|
|
|
|
|
return hash; |
|
|
|
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// 16-bit hash: the return value has to be interpreted as uint16_t and
|
|
|
|
|
|
// follows machine-specific endianess in memory
|
|
|
|
|
|
uint16_t pearson_hash_16 (const uint8_t *in, size_t len) { |
|
|
uint16_t pearson_hash_16 (const uint8_t *in, size_t len) { |
|
|
|
|
|
|
|
|
size_t i; |
|
|
return pearson_hash_64(in, len); |
|
|
uint16_t hash = 0; |
|
|
|
|
|
uint16_t hash_mask = 0x0100; |
|
|
|
|
|
|
|
|
|
|
|
for(i = 0; i < len; i++) { |
|
|
|
|
|
// broadcast the character
|
|
|
|
|
|
uint16_t c = (uint8_t)in[i]; |
|
|
|
|
|
c |= c << 8; |
|
|
|
|
|
// xor into hash, make them different permutations
|
|
|
|
|
|
hash ^= c ^ hash_mask; |
|
|
|
|
|
// table lookup
|
|
|
|
|
|
hash = t[(uint8_t)hash] + (t[hash >> 8] << 8); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// return value
|
|
|
|
|
|
return hash; |
|
|
|
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#endif // AES-NI & SSSE3, plain C ---------------------------------------------------------
|
|
|
void pearson_hash_init(void) { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void pearson_hash_init () { |
|
|
|
|
|
|
|
|
|
|
|
#if defined (__AES__) && (__SSSE3__) |
|
|
|
|
|
// no initialization required for SSSE/AES-NI
|
|
|
|
|
|
#else |
|
|
|
|
|
size_t i; |
|
|
|
|
|
|
|
|
|
|
|
// lookup table for 16-bit lookups
|
|
|
|
|
|
for(i = 0; i < 65536; i++) |
|
|
|
|
|
t16[i] = (t[i >> 8] << 8) + t[(uint8_t)i]; |
|
|
|
|
|
#endif |
|
|
|
|
|
} |
|
|
} |
|
|