Browse Source

Merge pull request #400 from Logan007/revCc20

reworked cc20
pull/407/head
Luca Deri 4 years ago
committed by GitHub
parent
commit
43090bdcb4
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
  1. 1
      CMakeLists.txt
  2. 71
      include/cc20.h
  3. 3
      include/n2n.h
  4. 442
      src/cc20.c
  5. 4
      src/edge.c
  6. 2
      src/edge_utils.c
  7. 178
      src/transform_cc20.c
  8. 8
      tools/benchmark.c

1
CMakeLists.txt

@ -97,6 +97,7 @@ add_library(n2n STATIC
src/wire.c
src/minilzo.c
src/tf.c
src/cc20.c
src/transform_null.c
src/transform_tf.c
src/transform_aes.c

71
include/cc20.h

@ -0,0 +1,71 @@
/**
* (C) 2007-20 - ntop.org and contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not see see <http://www.gnu.org/licenses/>
*
*/
#ifndef CC20_H
#define CC20_H
#include <stdint.h>
#include "n2n.h" // HAVE_OPENSSL_1_1, traceEvent ...
#define CC20_IV_SIZE 16
#define CC20_KEY_BYTES (256/8)
#ifdef HAVE_OPENSSL_1_1 // openSSL 1.1 ----------------------------------------------------
#include <openssl/evp.h>
#include <openssl/err.h>
typedef struct cc20_context_t {
EVP_CIPHER_CTX *ctx; /* openssl's reusable evp_* en/de-cryption context */
const EVP_CIPHER *cipher; /* cipher to use: e.g. EVP_chacha20() */
uint8_t key[CC20_KEY_BYTES]; /* the pure key data for payload encryption & decryption */
} cc20_context_t;
#elif defined (__SSE2__) // SSE ----------------------------------------------------------
#include <immintrin.h>
typedef struct cc20_context {
uint32_t keystream32[16];
uint32_t state[16];
uint8_t key[CC20_KEY_BYTES];
} cc20_context_t;
#else // plain C --------------------------------------------------------------------------
typedef struct cc20_context {
uint32_t keystream32[16];
uint32_t state[16];
uint8_t key[CC20_KEY_BYTES];
} cc20_context_t;
#endif // openSSL 1.1, plain C ------------------------------------------------------------
int cc20_crypt (unsigned char *out, const unsigned char *in, size_t in_len,
const unsigned char *iv, cc20_context_t *ctx);
int cc20_init (const unsigned char *key, cc20_context_t **ctx);
int cc20_deinit (cc20_context_t *ctx);
#endif // CC20_H

3
include/n2n.h

@ -153,6 +153,7 @@ typedef struct ether_hdr ether_hdr_t;
#include "pearson.h"
#include "portable_endian.h"
#include "aes.h"
#include "cc20.h"
#include "speck.h"
#include "n2n_regex.h"
@ -415,9 +416,7 @@ typedef struct n2n_sn
int n2n_transop_null_init(const n2n_edge_conf_t *conf, n2n_trans_op_t *ttt);
int n2n_transop_tf_init(const n2n_edge_conf_t *conf, n2n_trans_op_t *ttt);
int n2n_transop_aes_init(const n2n_edge_conf_t *conf, n2n_trans_op_t *ttt);
#ifdef HAVE_OPENSSL_1_1
int n2n_transop_cc20_init(const n2n_edge_conf_t *conf, n2n_trans_op_t *ttt);
#endif
int n2n_transop_speck_init(const n2n_edge_conf_t *conf, n2n_trans_op_t *ttt);
/* Log */

442
src/cc20.c

@ -0,0 +1,442 @@
/**
* (C) 2007-20 - ntop.org and contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not see see <http://www.gnu.org/licenses/>
*
*/
#include "cc20.h"
#if defined (HAVE_OPENSSL_1_1) // openSSL 1.1 ---------------------------------------------
/* get any erorr message out of openssl
taken from https://en.wikibooks.org/wiki/OpenSSL/Error_handling */
static char *openssl_err_as_string (void) {
BIO *bio = BIO_new (BIO_s_mem ());
ERR_print_errors (bio);
char *buf = NULL;
size_t len = BIO_get_mem_data (bio, &buf);
char *ret = (char *) calloc (1, 1 + len);
if(ret)
memcpy (ret, buf, len);
BIO_free (bio);
return ret;
}
// encryption == decryption
int cc20_crypt (unsigned char *out, const unsigned char *in, size_t in_len,
const unsigned char *iv, cc20_context_t *ctx) {
int evp_len;
int evp_ciphertext_len;
if(1 == EVP_EncryptInit_ex(ctx->ctx, ctx->cipher, NULL, ctx->key, iv)) {
if(1 == EVP_CIPHER_CTX_set_padding(ctx->ctx, 0)) {
if(1 == EVP_EncryptUpdate(ctx->ctx, out, &evp_len, in, in_len)) {
evp_ciphertext_len = evp_len;
if(1 == EVP_EncryptFinal_ex(ctx->ctx, out + evp_len, &evp_len)) {
evp_ciphertext_len += evp_len;
if(evp_ciphertext_len != in_len)
traceEvent(TRACE_ERROR, "cc20_crypt openssl encryption: encrypted %u bytes where %u were expected",
evp_ciphertext_len, in_len);
} else
traceEvent(TRACE_ERROR, "cc20_crypt openssl final encryption: %s",
openssl_err_as_string());
} else
traceEvent(TRACE_ERROR, "cc20_encrypt openssl encrpytion: %s",
openssl_err_as_string());
} else
traceEvent(TRACE_ERROR, "cc20_encrypt openssl padding setup: %s",
openssl_err_as_string());
} else
traceEvent(TRACE_ERROR, "cc20_encrypt openssl init: %s",
openssl_err_as_string());
EVP_CIPHER_CTX_reset(ctx->ctx);
return 0;
}
#elif defined (__SSE2__) // SSE ----------------------------------------------------------
// taken (and modified and enhanced) from
// https://github.com/Ginurx/chacha20-c (public domain)
static void cc20_init_block(cc20_context_t *ctx, const uint8_t nonce[]) {
const uint8_t *magic_constant = (uint8_t*)"expand 32-byte k";
memcpy(&(ctx->state[ 0]), magic_constant, 16);
memcpy(&(ctx->state[ 4]), ctx->key, CC20_KEY_BYTES);
memcpy(&(ctx->state[12]), nonce, CC20_IV_SIZE);
}
#define SL _mm_slli_epi32
#define SR _mm_srli_epi32
#define XOR _mm_xor_si128
#define AND _mm_and_si128
#define ADD _mm_add_epi32
#define ROL(X,r) (XOR(SL(X,r),SR(X,(32-r))))
#if defined (__SSE3__) // --- SSE3
#define L8 _mm_set_epi32(0x0e0d0c0fL, 0x0a09080bL, 0x06050407L, 0x02010003L)
#define L16 _mm_set_epi32(0x0d0c0f0eL, 0x09080b0aL, 0x05040706L, 0x01000302L)
#define ROL8(X) ( _mm_shuffle_epi8(X, L8)) /* SSE 3 */
#define ROL16(X) ( _mm_shuffle_epi8(X, L16)) /* SSE 3 */
#else // --- regular SSE2 --------
#define ROL8(X) ROL(X,8)
#define ROL16(X) ROL(X,16)
#endif // ------------------------
#define CC20_PERMUTE_ROWS(A,B,C,D) \
B = _mm_shuffle_epi32(B, _MM_SHUFFLE(0, 3, 2, 1)); \
C = _mm_shuffle_epi32(C, _MM_SHUFFLE(1, 0, 3, 2)); \
D = _mm_shuffle_epi32(D, _MM_SHUFFLE(2, 1, 0, 3))
#define CC20_PERMUTE_ROWS_INV(A,B,C,D) \
B = _mm_shuffle_epi32(B, _MM_SHUFFLE(2, 1, 0, 3)); \
C = _mm_shuffle_epi32(C, _MM_SHUFFLE(1, 0, 3, 2)); \
D = _mm_shuffle_epi32(D, _MM_SHUFFLE(0, 3, 2, 1))
#define CC20_ODD_ROUND(A,B,C,D) \
/* odd round */ \
A = ADD(A, B); D = ROL16(XOR(D, A)); \
C = ADD(C, D); B = ROL(XOR(B, C), 12); \
A = ADD(A, B); D = ROL8(XOR(D, A)); \
C = ADD(C, D); B = ROL(XOR(B, C), 7)
#define CC20_EVEN_ROUND(A,B,C,D) \
CC20_PERMUTE_ROWS (A, B, C, D); \
CC20_ODD_ROUND (A, B, C, D); \
CC20_PERMUTE_ROWS_INV(A, B, C, D)
#define CC20_DOUBLE_ROUND(A,B,C,D) \
CC20_ODD_ROUND (A, B, C, D); \
CC20_EVEN_ROUND(A, B, C, D)
static void cc20_block_next(cc20_context_t *ctx) {
uint32_t *counter = ctx->state + 12;
uint32_t cnt;
__m128i a, b, c, d, k0, k1, k2, k3;
a = _mm_loadu_si128 ((__m128i*)&(ctx->state[ 0]));
b = _mm_loadu_si128 ((__m128i*)&(ctx->state[ 4]));
c = _mm_loadu_si128 ((__m128i*)&(ctx->state[ 8]));
d = _mm_loadu_si128 ((__m128i*)&(ctx->state[12]));
k0 = a;
k1 = b;
k2 = c;
k3 = d;
// 10 double rounds
CC20_DOUBLE_ROUND(k0, k1, k2, k3);
CC20_DOUBLE_ROUND(k0, k1, k2, k3);
CC20_DOUBLE_ROUND(k0, k1, k2, k3);
CC20_DOUBLE_ROUND(k0, k1, k2, k3);
CC20_DOUBLE_ROUND(k0, k1, k2, k3);
CC20_DOUBLE_ROUND(k0, k1, k2, k3);
CC20_DOUBLE_ROUND(k0, k1, k2, k3);
CC20_DOUBLE_ROUND(k0, k1, k2, k3);
CC20_DOUBLE_ROUND(k0, k1, k2, k3);
CC20_DOUBLE_ROUND(k0, k1, k2, k3);
k0 = ADD(k0, a);
k1 = ADD(k1, b);
k2 = ADD(k2, c);
k3 = ADD(k3, d);
_mm_storeu_si128 ((__m128i*)&(ctx->keystream32[ 0]), k0);
_mm_storeu_si128 ((__m128i*)&(ctx->keystream32[ 4]), k1);
_mm_storeu_si128 ((__m128i*)&(ctx->keystream32[ 8]), k2);
_mm_storeu_si128 ((__m128i*)&(ctx->keystream32[12]), k3);
// increment counter, make sure it is and stays little endian in memory
cnt = le32toh(counter[0]);
counter[0] = htole32(++cnt);
if(0 == counter[0]) {
// wrap around occured, increment higher 32 bits of counter
// unlikely with 1,500 byte sized packets
cnt = le32toh(counter[1]);
counter[1] = htole32(++cnt);
if(0 == counter[1]) {
// very unlikely
cnt = le32toh(counter[2]);
counter[2] = htole32(++cnt);
if(0 == counter[2]) {
// extremely unlikely
cnt = le32toh(counter[3]);
counter[3] = htole32(++cnt);
}
}
}
}
static void cc20_init_context(cc20_context_t *ctx, const uint8_t *nonce) {
cc20_init_block(ctx, nonce);
}
int cc20_crypt (unsigned char *out, const unsigned char *in, size_t in_len,
const unsigned char *iv, cc20_context_t *ctx) {
uint8_t *keystream8 = (uint8_t*)ctx->keystream32;
uint32_t * in_p = (uint32_t*)in;
uint32_t * out_p = (uint32_t*)out;
size_t tmp_len = in_len;
cc20_init_context(ctx, iv);
while(in_len >= 64) {
cc20_block_next(ctx);
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[ 0]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[ 1]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[ 2]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[ 3]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[ 4]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[ 5]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[ 6]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[ 7]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[ 8]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[ 9]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[10]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[11]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[12]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[13]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[14]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[15]; in_p++; out_p++;
in_len -= 64;
}
if(in_len > 0) {
cc20_block_next(ctx);
tmp_len -= in_len;
while(in_len > 0) {
out[tmp_len] = in[tmp_len] ^ keystream8[tmp_len%64];
tmp_len++;
in_len--;
}
}
}
#else // plain C --------------------------------------------------------------------------
// taken (and modified) from https://github.com/Ginurx/chacha20-c (public domain)
static void cc20_init_block(cc20_context_t *ctx, const uint8_t nonce[]) {
const uint8_t *magic_constant = (uint8_t*)"expand 32-byte k";
memcpy(&(ctx->state[ 0]), magic_constant, 16);
memcpy(&(ctx->state[ 4]), ctx->key, CC20_KEY_BYTES);
memcpy(&(ctx->state[12]), nonce, CC20_IV_SIZE);
}
#define ROL32(x,r) (((x)<<(r))|((x)>>(32-(r))))
#define CC20_QUARTERROUND(x, a, b, c, d) \
x[a] += x[b]; x[d] = ROL32(x[d] ^ x[a], 16); \
x[c] += x[d]; x[b] = ROL32(x[b] ^ x[c], 12); \
x[a] += x[b]; x[d] = ROL32(x[d] ^ x[a], 8); \
x[c] += x[d]; x[b] = ROL32(x[b] ^ x[c], 7)
#define CC20_DOUBLE_ROUND(s) \
/* odd round */ \
CC20_QUARTERROUND(s, 0, 4, 8, 12); \
CC20_QUARTERROUND(s, 1, 5, 9, 13); \
CC20_QUARTERROUND(s, 2, 6, 10, 14); \
CC20_QUARTERROUND(s, 3, 7, 11, 15); \
/* even round */ \
CC20_QUARTERROUND(s, 0, 5, 10, 15); \
CC20_QUARTERROUND(s, 1, 6, 11, 12); \
CC20_QUARTERROUND(s, 2, 7, 8, 13); \
CC20_QUARTERROUND(s, 3, 4, 9, 14)
static void cc20_block_next(cc20_context_t *ctx) {
uint32_t *counter = ctx->state + 12;
uint32_t c;
ctx->keystream32[ 0] = ctx->state[ 0];
ctx->keystream32[ 1] = ctx->state[ 1];
ctx->keystream32[ 2] = ctx->state[ 2];
ctx->keystream32[ 3] = ctx->state[ 3];
ctx->keystream32[ 4] = ctx->state[ 4];
ctx->keystream32[ 5] = ctx->state[ 5];
ctx->keystream32[ 6] = ctx->state[ 6];
ctx->keystream32[ 7] = ctx->state[ 7];
ctx->keystream32[ 8] = ctx->state[ 8];
ctx->keystream32[ 9] = ctx->state[ 9];
ctx->keystream32[10] = ctx->state[10];
ctx->keystream32[11] = ctx->state[11];
ctx->keystream32[12] = ctx->state[12];
ctx->keystream32[13] = ctx->state[13];
ctx->keystream32[14] = ctx->state[14];
ctx->keystream32[15] = ctx->state[15];
// 10 double rounds
CC20_DOUBLE_ROUND(ctx->keystream32);
CC20_DOUBLE_ROUND(ctx->keystream32);
CC20_DOUBLE_ROUND(ctx->keystream32);
CC20_DOUBLE_ROUND(ctx->keystream32);
CC20_DOUBLE_ROUND(ctx->keystream32);
CC20_DOUBLE_ROUND(ctx->keystream32);
CC20_DOUBLE_ROUND(ctx->keystream32);
CC20_DOUBLE_ROUND(ctx->keystream32);
CC20_DOUBLE_ROUND(ctx->keystream32);
CC20_DOUBLE_ROUND(ctx->keystream32);
ctx->keystream32[ 0] += ctx->state[ 0];
ctx->keystream32[ 1] += ctx->state[ 1];
ctx->keystream32[ 2] += ctx->state[ 2];
ctx->keystream32[ 3] += ctx->state[ 3];
ctx->keystream32[ 4] += ctx->state[ 4];
ctx->keystream32[ 5] += ctx->state[ 5];
ctx->keystream32[ 6] += ctx->state[ 6];
ctx->keystream32[ 7] += ctx->state[ 7];
ctx->keystream32[ 8] += ctx->state[ 8];
ctx->keystream32[ 9] += ctx->state[ 9];
ctx->keystream32[10] += ctx->state[10];
ctx->keystream32[11] += ctx->state[11];
ctx->keystream32[12] += ctx->state[12];
ctx->keystream32[13] += ctx->state[13];
ctx->keystream32[14] += ctx->state[14];
ctx->keystream32[15] += ctx->state[15];
// increment counter, make sure it is and stays little endian in memory
c = le32toh(counter[0]);
counter[0] = htole32(++c);
if(0 == counter[0]) {
// wrap around occured, increment higher 32 bits of counter
// unlikely with 1,500 byte sized packets
c = le32toh(counter[1]);
counter[1] = htole32(++c);
if(0 == counter[1]) {
// very unlikely
c = le32toh(counter[2]);
counter[2] = htole32(++c);
if(0 == counter[2]) {
// extremely unlikely
c = le32toh(counter[3]);
counter[3] = htole32(++c);
}
}
}
}
static void cc20_init_context(cc20_context_t *ctx, const uint8_t *nonce) {
cc20_init_block(ctx, nonce);
}
int cc20_crypt (unsigned char *out, const unsigned char *in, size_t in_len,
const unsigned char *iv, cc20_context_t *ctx) {
uint8_t *keystream8 = (uint8_t*)ctx->keystream32;
uint32_t * in_p = (uint32_t*)in;
uint32_t * out_p = (uint32_t*)out;
size_t tmp_len = in_len;
cc20_init_context(ctx, iv);
while(in_len >= 64) {
cc20_block_next(ctx);
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[ 0]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[ 1]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[ 2]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[ 3]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[ 4]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[ 5]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[ 6]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[ 7]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[ 8]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[ 9]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[10]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[11]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[12]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[13]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[14]; in_p++; out_p++;
*(uint32_t*)out_p = *(uint32_t*)in_p ^ ctx->keystream32[15]; in_p++; out_p++;
in_len -= 64;
}
if(in_len > 0) {
cc20_block_next(ctx);
tmp_len -= in_len;
while(in_len > 0) {
out[tmp_len] = in[tmp_len] ^ keystream8[tmp_len%64];
tmp_len++;
in_len--;
}
}
}
#endif // openSSL 1.1, plain C ------------------------------------------------------------
int cc20_init (const unsigned char *key, cc20_context_t **ctx) {
// allocate context...
*ctx = (cc20_context_t*) calloc(1, sizeof(cc20_context_t));
if (!(*ctx))
return -1;
#if defined (HAVE_OPENSSL_1_1)
if(!((*ctx)->ctx = EVP_CIPHER_CTX_new())) {
traceEvent(TRACE_ERROR, "cc20_init openssl's evp_* encryption context creation failed: %s",
openssl_err_as_string());
return -1;
}
(*ctx)->cipher = EVP_chacha20();
#endif
memcpy((*ctx)->key, key, CC20_KEY_BYTES);
return 0;
}
int cc20_deinit (cc20_context_t *ctx) {
#if defined (HAVE_OPENSSL_1_1)
if (ctx->ctx) EVP_CIPHER_CTX_free(ctx->ctx);
#endif
return 0;
}

4
src/edge.c

@ -165,9 +165,7 @@ static void help() {
printf("-A1 | Disable payload encryption. Do not use with key (defaulting to Twofish then).\n");
printf("-A2 ... -A5 or -A | Choose a cipher for payload encryption, requires a key: -A2 = Twofish (default),\n");
printf(" | -A3 or -A (deprecated) = AES, "
#ifdef HAVE_OPENSSL_1_1
"-A4 = ChaCha20, "
#endif
"-A5 = Speck-CTR.\n");
printf("-H | Enable full header encryption. Requires supernode with fixed community.\n");
printf("-z1 ... -z2 or -z | Enable compression for outgoing data packets: -z1 or -z = lzo1x"
@ -245,13 +243,11 @@ static void setPayloadEncryption( n2n_edge_conf_t *conf, int cipher) {
conf->transop_id = N2N_TRANSFORM_ID_AES;
break;
}
#ifdef HAVE_OPENSSL_1_1
case 4:
{
conf->transop_id = N2N_TRANSFORM_ID_CHACHA20;
break;
}
#endif
case 5:
{
conf->transop_id = N2N_TRANSFORM_ID_SPECK;

2
src/edge_utils.c

@ -224,11 +224,9 @@ n2n_edge_t* edge_init(const n2n_edge_conf_t *conf, int *rv) {
case N2N_TRANSFORM_ID_AES:
rc = n2n_transop_aes_init(&eee->conf, &eee->transop);
break;
#ifdef HAVE_OPENSSL_1_1
case N2N_TRANSFORM_ID_CHACHA20:
rc = n2n_transop_cc20_init(&eee->conf, &eee->transop);
break;
#endif
case N2N_TRANSFORM_ID_SPECK:
rc = n2n_transop_speck_init(&eee->conf, &eee->transop);
break;

178
src/transform_cc20.c

@ -16,37 +16,25 @@
*
*/
#include "n2n.h"
#ifdef HAVE_OPENSSL_1_1
#include <openssl/sha.h>
#include <openssl/evp.h>
#include <openssl/err.h>
#define N2N_CC20_IVEC_SIZE 16
#include "n2n.h"
#define CC20_KEY_BYTES (256/8)
/* ChaCha20 plaintext preamble */
#define TRANSOP_CC20_PREAMBLE_SIZE (N2N_CC20_IVEC_SIZE)
typedef unsigned char n2n_cc20_ivec_t[N2N_CC20_IVEC_SIZE];
#define CC20_PREAMBLE_SIZE (CC20_IV_SIZE)
typedef struct transop_cc20 {
EVP_CIPHER_CTX *enc_ctx; /* openssl's reusable evp_* encryption context */
EVP_CIPHER_CTX *dec_ctx; /* openssl's reusable evp_* decryption context */
const EVP_CIPHER *cipher; /* cipher to use: EVP_chacha20() */
uint8_t key[32]; /* the pure key data for payload encryption & decryption */
cc20_context_t *ctx;
} transop_cc20_t;
/* ****************************************************** */
static int transop_deinit_cc20(n2n_trans_op_t *arg) {
transop_cc20_t *priv = (transop_cc20_t *)arg->priv;
EVP_CIPHER_CTX_free(priv->enc_ctx);
EVP_CIPHER_CTX_free(priv->dec_ctx);
if(priv->ctx)
cc20_deinit(priv->ctx);
if(priv)
free(priv);
@ -56,35 +44,6 @@ static int transop_deinit_cc20(n2n_trans_op_t *arg) {
/* ****************************************************** */
/* get any erorr message out of openssl
taken from https://en.wikibooks.org/wiki/OpenSSL/Error_handling */
static char *openssl_err_as_string (void) {
BIO *bio = BIO_new (BIO_s_mem ());
ERR_print_errors (bio);
char *buf = NULL;
size_t len = BIO_get_mem_data (bio, &buf);
char *ret = (char *) calloc (1, 1 + len);
if(ret)
memcpy (ret, buf, len);
BIO_free (bio);
return ret;
}
/* ****************************************************** */
static void set_cc20_iv(transop_cc20_t *priv, n2n_cc20_ivec_t ivec) {
// keep in mind the following condition: N2N_CC20_IVEC_SIZE % sizeof(rand_value) == 0 !
uint64_t rand_value;
for (uint8_t i = 0; i < N2N_CC20_IVEC_SIZE; i += sizeof(rand_value)) {
rand_value = n2n_rand();
memcpy(ivec + i, &rand_value, sizeof(rand_value));
}
}
/* ****************************************************** */
/** The ChaCha20 packet format consists of:
*
* - a 128-bit random IV
@ -99,56 +58,30 @@ static int transop_encode_cc20(n2n_trans_op_t * arg,
const uint8_t * inbuf,
size_t in_len,
const uint8_t * peer_mac) {
int len=-1;
transop_cc20_t * priv = (transop_cc20_t *)arg->priv;
uint8_t assembly[N2N_PKT_BUF_SIZE] = {0};
if(in_len <= N2N_PKT_BUF_SIZE) {
if((in_len + TRANSOP_CC20_PREAMBLE_SIZE) <= out_len) {
if((in_len + CC20_PREAMBLE_SIZE) <= out_len) {
size_t idx=0;
n2n_cc20_ivec_t enc_ivec = {0};
traceEvent(TRACE_DEBUG, "encode_cc20 %lu bytes", in_len);
/* Generate and encode the IV. */
set_cc20_iv(priv, enc_ivec);
encode_buf(outbuf, &idx, &enc_ivec, N2N_CC20_IVEC_SIZE);
// full IV sized random value (128 bit)
encode_uint64(outbuf, &idx, n2n_rand());
encode_uint64(outbuf, &idx, n2n_rand());
/* Encrypt the assembly contents and write the ciphertext after the iv. */
/* len is set to the length of the cipher plain text to be encrpyted
which is (in this case) identical to original packet lentgh */
len = in_len;
cc20_crypt(outbuf + CC20_PREAMBLE_SIZE,
inbuf,
in_len,
outbuf, // IV
priv->ctx);
/* The assembly buffer is a source for encrypting data.
* The whole contents of assembly are encrypted. */
memcpy(assembly, inbuf, in_len);
EVP_CIPHER_CTX *ctx = priv->enc_ctx;
int evp_len;
int evp_ciphertext_len;
if(1 == EVP_EncryptInit_ex(ctx, priv->cipher, NULL, priv->key, enc_ivec)) {
if(1 == EVP_CIPHER_CTX_set_padding(ctx, 0)) {
if(1 == EVP_EncryptUpdate(ctx, outbuf + TRANSOP_CC20_PREAMBLE_SIZE, &evp_len, assembly, len)) {
evp_ciphertext_len = evp_len;
if(1 == EVP_EncryptFinal_ex(ctx, outbuf + TRANSOP_CC20_PREAMBLE_SIZE + evp_len, &evp_len)) {
evp_ciphertext_len += evp_len;
if(evp_ciphertext_len != len)
traceEvent(TRACE_ERROR, "encode_cc20 openssl encryption: encrypted %u bytes where %u were expected.\n",
evp_ciphertext_len, len);
} else
traceEvent(TRACE_ERROR, "encode_cc20 openssl final encryption: %s\n", openssl_err_as_string());
} else
traceEvent(TRACE_ERROR, "encode_cc20 openssl encrpytion: %s\n", openssl_err_as_string());
} else
traceEvent(TRACE_ERROR, "encode_cc20 openssl padding setup: %s\n", openssl_err_as_string());
} else
traceEvent(TRACE_ERROR, "encode_cc20 openssl init: %s\n", openssl_err_as_string());
EVP_CIPHER_CTX_reset(ctx);
len += TRANSOP_CC20_PREAMBLE_SIZE; /* size of data carried in UDP. */
len += CC20_PREAMBLE_SIZE; /* size of data carried in UDP. */
} else
traceEvent(TRACE_ERROR, "encode_cc20 outbuf too small.");
} else
@ -166,50 +99,28 @@ static int transop_decode_cc20(n2n_trans_op_t * arg,
const uint8_t * inbuf,
size_t in_len,
const uint8_t * peer_mac) {
int len=0;
transop_cc20_t * priv = (transop_cc20_t *)arg->priv;
uint8_t assembly[N2N_PKT_BUF_SIZE];
if(((in_len - TRANSOP_CC20_PREAMBLE_SIZE) <= N2N_PKT_BUF_SIZE) /* Cipher text fits in assembly */
&& (in_len >= TRANSOP_CC20_PREAMBLE_SIZE) /* Has at least iv */
if(((in_len - CC20_PREAMBLE_SIZE) <= N2N_PKT_BUF_SIZE) /* Cipher text fits in assembly */
&& (in_len >= CC20_PREAMBLE_SIZE) /* Has at least iv */
)
{
size_t rem=in_len;
size_t idx=0;
n2n_cc20_ivec_t dec_ivec = {0};
traceEvent(TRACE_DEBUG, "decode_cc20 %lu bytes", in_len);
len = (in_len - TRANSOP_CC20_PREAMBLE_SIZE);
/* Get the IV */
decode_buf((uint8_t *)&dec_ivec, N2N_CC20_IVEC_SIZE, inbuf, &rem, &idx);
EVP_CIPHER_CTX *ctx = priv->dec_ctx;
int evp_len;
int evp_plaintext_len;
if(1 == EVP_DecryptInit_ex(ctx, priv->cipher, NULL, priv->key, dec_ivec)) {
if(1 == EVP_CIPHER_CTX_set_padding(ctx, 0)) {
if(1 == EVP_DecryptUpdate(ctx, assembly, &evp_len, inbuf + TRANSOP_CC20_PREAMBLE_SIZE, len)) {
evp_plaintext_len = evp_len;
if(1 == EVP_DecryptFinal_ex(ctx, assembly + evp_len, &evp_len)) {
evp_plaintext_len += evp_len;
if(evp_plaintext_len != len)
traceEvent(TRACE_ERROR, "decode_cc20 openssl decryption: decrypted %u bytes where %u were expected.\n",
evp_plaintext_len, len);
} else
traceEvent(TRACE_ERROR, "decode_cc20 openssl final decryption: %s\n", openssl_err_as_string());
} else
traceEvent(TRACE_ERROR, "decode_cc20 openssl decrpytion: %s\n", openssl_err_as_string());
} else
traceEvent(TRACE_ERROR, "decode_cc20 openssl padding setup: %s\n", openssl_err_as_string());
} else
traceEvent(TRACE_ERROR, "decode_cc20 openssl init: %s\n", openssl_err_as_string());
len = (in_len - CC20_PREAMBLE_SIZE);
EVP_CIPHER_CTX_reset(ctx);
cc20_crypt(outbuf,
inbuf + CC20_PREAMBLE_SIZE,
in_len,
inbuf, // IV
priv->ctx);
memcpy(outbuf, assembly, len);
} else
traceEvent(TRACE_ERROR, "decode_cc20 inbuf wrong size (%ul) to decrypt.", in_len);
@ -218,20 +129,21 @@ static int transop_decode_cc20(n2n_trans_op_t * arg,
/* ****************************************************** */
static int setup_cc20_key(transop_cc20_t *priv, const uint8_t *key, ssize_t key_size) {
uint8_t key_mat_buf[SHA256_DIGEST_LENGTH];
static int setup_cc20_key(transop_cc20_t *priv, const uint8_t *password, ssize_t password_len) {
priv->cipher = EVP_chacha20();
uint8_t key_mat[CC20_KEY_BYTES];
/* Clear out any old possibly longer key matter. */
memset(&(priv->key), 0, sizeof(priv->key) );
/* The input key always gets hashed to make a more unpredictable and more complete use of the key space */
SHA256(key, key_size, key_mat_buf);
memcpy (priv->key, key_mat_buf, SHA256_DIGEST_LENGTH);
pearson_hash_256(key_mat, password, password_len);
traceEvent(TRACE_DEBUG, "ChaCha20 key setup completed\n");
if(cc20_init(key_mat, &(priv->ctx))) {
traceEvent(TRACE_ERROR, "setup_cc20_key setup unsuccessful");
return -1;
}
traceEvent(TRACE_DEBUG, "setup_cc20_key completed");
return(0);
return 0;
}
/* ****************************************************** */
@ -242,6 +154,7 @@ static void transop_tick_cc20(n2n_trans_op_t * arg, time_t now) { ; }
/* ChaCha20 initialization function */
int n2n_transop_cc20_init(const n2n_edge_conf_t *conf, n2n_trans_op_t *ttt) {
transop_cc20_t *priv;
const u_char *encrypt_key = (const u_char *)conf->encrypt_key;
size_t encrypt_key_len = strlen(conf->encrypt_key);
@ -261,19 +174,6 @@ int n2n_transop_cc20_init(const n2n_edge_conf_t *conf, n2n_trans_op_t *ttt) {
}
ttt->priv = priv;
/* Setup openssl's reusable evp_* contexts for encryption and decryption*/
if(!(priv->enc_ctx = EVP_CIPHER_CTX_new())) {
traceEvent(TRACE_ERROR, "openssl's evp_* encryption context creation: %s\n", openssl_err_as_string());
return(-1);
}
if(!(priv->dec_ctx = EVP_CIPHER_CTX_new())) {
traceEvent(TRACE_ERROR, "openssl's evp_* decryption context creation: %s\n", openssl_err_as_string());
return(-1);
}
/* Setup the cipher and key */
return(setup_cc20_key(priv, encrypt_key, encrypt_key_len));
return setup_cc20_key(priv, encrypt_key, encrypt_key_len);
}
#endif /* HAVE_OPENSSL_1_1 */

8
tools/benchmark.c

@ -64,9 +64,7 @@ int main(int argc, char * argv[]) {
uint8_t pktbuf[N2N_PKT_BUF_SIZE];
n2n_trans_op_t transop_null, transop_tf;
n2n_trans_op_t transop_aes;
#ifdef HAVE_OPENSSL_1_1
n2n_trans_op_t transop_cc20;
#endif
n2n_trans_op_t transop_speck;
n2n_edge_conf_t conf;
@ -82,27 +80,21 @@ int main(int argc, char * argv[]) {
n2n_transop_null_init(&conf, &transop_null);
n2n_transop_tf_init(&conf, &transop_tf);
n2n_transop_aes_init(&conf, &transop_aes);
#ifdef HAVE_OPENSSL_1_1
n2n_transop_cc20_init(&conf, &transop_cc20);
#endif
n2n_transop_speck_init(&conf, &transop_speck);
/* Run the tests */
run_transop_benchmark("transop_null", &transop_null, &conf, pktbuf);
run_transop_benchmark("transop_tf", &transop_tf, &conf, pktbuf);
run_transop_benchmark("transop_aes", &transop_aes, &conf, pktbuf);
#ifdef HAVE_OPENSSL_1_1
run_transop_benchmark("transop_cc20", &transop_cc20, &conf, pktbuf);
#endif
run_transop_benchmark("transop_speck", &transop_speck, &conf, pktbuf);
/* Cleanup */
transop_null.deinit(&transop_null);
transop_tf.deinit(&transop_tf);
transop_aes.deinit(&transop_aes);
#ifdef HAVE_OPENSSL_1_1
transop_cc20.deinit(&transop_cc20);
#endif
transop_speck.deinit(&transop_speck);
return 0;

Loading…
Cancel
Save