Browse Source

prepared header encryption

pull/265/head
Logan007 4 years ago
parent
commit
365d2b2782
  1. 5
      CMakeLists.txt
  2. 1
      Makefile.in
  3. 65
      header_encryption.c
  4. 17
      header_encryption.h
  5. 8
      n2n.h
  6. 195
      pearson.c
  7. 3
      pearson.h
  8. 7
      speck.h

5
CMakeLists.txt

@ -61,7 +61,12 @@ add_library(n2n n2n.c
transform_null.c
transform_tf.c
transform_aes.c
transform_cc20.c
transform_speck.c
speck.c
pearson.c
random_numbers.c
header_encryption.c
tuntap_freebsd.c
tuntap_netbsd.c
tuntap_linux.c

1
Makefile.in

@ -51,6 +51,7 @@ N2N_LIB=libn2n.a
N2N_OBJS=n2n.o wire.o minilzo.o twofish.o speck.o \
edge_utils.o sn_utils.o \
transform_null.o transform_tf.o transform_aes.o transform_cc20.o transform_speck.o \
header_encryption.o pearson.o \
tuntap_freebsd.o tuntap_netbsd.o tuntap_linux.o random_numbers.o \
tuntap_osx.o
LIBS_EDGE+=$(LIBS_EDGE_OPT)

65
header_encryption.c

@ -1,35 +1,38 @@
#include <stdio.h>
#include <stdint.h>
#include "header_encryption.h"
#include <string.h>
// #include "n2n_wire.h" // n2n_community_t
#include "n2n.h"
#include "speck.h"
#include "random_numbers.h"
#include "pearson.h"
#include "portable_endian.h"
uint32_t decryt_packet_header (uint8_t packet[], uint8_t packet_len,
char * community_name, speck_ctx * ctx) {
#include <stdio.h>
uint32_t packet_header_decrypt (uint8_t packet[], uint8_t packet_len,
char * community_name, he_context_t * ctx) {
// assemble IV
// the last four are ASCII "n2n!" and do not get overwritten
uint8_t iv[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x6E, 0x32, 0x6E, 0x21 };
// the first 96 bits of the packet are used padded with ASCII "n2n!"
// the first 96 bits of the packet get padded with ASCII "n2n!"
// to full 128 bit IV
memcopy (iv, packet, 12);
// alternatively, consider: pearson_hash_128 (iv, packet, 12)
memcpy (iv, packet, 12);
// alternatively, consider: pearson_hash_128 (iv, packet, 12);
// try community name as possible key and check for magic bytes
uint32_t magic = 0x6E326E00; // ="n2n_"
uint32_t test_magic;
// check for magic bytes and resonable value in header len field
speck_he ((uint8_t*)&test_magic, &packet[12], 4, iv, ctx);
speck_he ((uint8_t*)&test_magic, &packet[12], 4, iv, (speck_context_t*)ctx);
test_magic = be32toh (test_magic);
if ( ((test_magic << 8) == magic)
&& ((test_magic >> 24) <= packet_len) // (test_masgic >> 24) is header_len
) {
speck_he (&packet[12], &packet[12], (test_magic >> 24) - 12, iv, ctx);
speck_he (&packet[12], &packet[12], (test_magic >> 24) - 12, iv, (speck_context_t*)ctx);
// restore original packet order
memcpy (&packet[0], &packet[16], 4);
memcpy (&packet[4], community_name, N2N_COMMUNITY_SIZE);
@ -39,7 +42,7 @@ uint32_t decryt_packet_header (uint8_t packet[], uint8_t packet_len,
}
int32_t decryt_packet_header_if_required (uint8_t packet[], uint16_t packet_len,
int32_t packet_header_decrypt_if_required (uint8_t packet[], uint16_t packet_len,
struct sn_community *communities) {
if (packet_len < 20)
@ -58,8 +61,12 @@ int32_t decryt_packet_header_if_required (uint8_t packet[], uint16_t packet_len,
) {
// most probably unencrypted
return (1);
// TODO:
// !!! make sure, no downgrading happens here !!!
// NOT FOR DEFINETLY ENCRYPTED COMMUNITIES / NO DOWNGRADE, NO INJECTION
return (HEADER_ENCRYPTION_NONE);
} else {
// most probably encrypted
@ -67,24 +74,23 @@ int32_t decryt_packet_header_if_required (uint8_t packet[], uint16_t packet_len,
int32_t ret;
struct sn_community *c, *tmp;
HASH_ITER (hh, communities, c, tmp) {
// check if this is an encrypted community
if ( ret = decrypt_packet_header (packet, packet_len, c->community, c-> ctx) ) {
// no upgrade from unencrypted to encrypted
if (c->header_encryption == 1)
return (-2);
// skip the definitely unencrypted communities
if (c->header_encryption == HEADER_ENCRYPTION_NONE)
continue;
if ( (ret = packet_header_decrypt (packet, packet_len, c->community, &(c->header_encryption_ctx))) ) {
// set to 'encrypted'
c->header_encryption = 2;
c->header_encryption = HEADER_ENCRYPTION_ENABLED;
// no need to test any further
return (2);
return (HEADER_ENCRYPTION_ENABLED);
}
}
// no match
// no matching key/community
return (-3);
}
}
int32_t encryt_packet_header (uint8_t packet[], uint8_t header_len, speck_ctx * ctx) {
int32_t packet_header_encrypt (uint8_t packet[], uint8_t header_len, he_context_t * ctx) {
if (header_len < 20)
return (-1);
@ -100,5 +106,16 @@ int32_t encryt_packet_header (uint8_t packet[], uint8_t header_len, speck_ctx *
iv[12] = header_len;
speck_he (&packet[12], &packet[12], header_len - 12, iv, ctx);
speck_he (&packet[12], &packet[12], header_len - 12, iv, (speck_context_t*)ctx);
return (0);
}
void packet_header_setup_key (char * community_name, he_context_t * ctx) {
uint8_t key[16];
pearson_hash_128 (key, (uint8_t*)community_name, N2N_COMMUNITY_SIZE);
speck_expand_key_he (key, ctx);
}

17
header_encryption.h

@ -0,0 +1,17 @@
#include <stdint.h>
#include "speck.h"
typedef speck_context_t he_context_t;
#define HEADER_ENCRYPTION_UNKNOWN 0
#define HEADER_ENCRYPTION_NONE 1
#define HEADER_ENCRYPTION_ENABLED 2
uint32_t decrypt_packet_header (uint8_t packet[], uint8_t packet_len,
char * community_name, he_context_t * ctx);
int32_t encryt_packet_header (uint8_t packet[], uint8_t header_len, he_context_t * ctx);
int32_t encryt_packet_header (uint8_t packet[], uint8_t header_len, he_context_t * ctx);

8
n2n.h

@ -111,6 +111,7 @@ typedef struct ether_hdr ether_hdr_t;
#include <openssl/opensslv.h>
#include <openssl/crypto.h>
#include "minilzo.h"
#include "header_encryption.h"
#define closesocket(a) close(a)
#endif /* #ifndef WIN32 */
@ -160,6 +161,7 @@ typedef struct tuntap_dev {
#define MSG_TYPE_FEDERATION 8
#define MSG_TYPE_PEER_INFO 9
#define MSG_TYPE_QUERY_PEER 10
#define MSG_TYPE_MAX_TYPE 10
/* N2N compression indicators. */
/* Compression is disabled by default for outgoing packets if no cli
@ -225,6 +227,8 @@ typedef struct n2n_edge_conf {
n2n_sn_name_t sn_ip_array[N2N_EDGE_NUM_SUPERNODES];
n2n_route_t *routes; /**< Networks to route through n2n */
n2n_community_t community_name; /**< The community. 16 full octets. */
uint8_t header_encryption; /**< Header encryption indicator. */
he_context_t header_encryption_ctx; /**< Header encryption cipher context. */
n2n_transform_t transop_id; /**< The transop to use. */
uint16_t compression; /**< Compress outgoing data packets before encryption */
uint16_t num_routes; /**< Number of routes in routes */
@ -270,7 +274,9 @@ typedef struct sn_stats
struct sn_community
{
char community[N2N_COMMUNITY_SIZE];
struct peer_info *edges; /* Link list of registered edges. */
uint8_t header_encryption; /* Header encryption indicator. */
he_context_t header_encryption_ctx; /* Header encryption cipher context. */
struct peer_info *edges; /* Link list of registered edges. */
UT_hash_handle hh; /* makes this structure hashable */
};

195
pearson.c

@ -0,0 +1,195 @@
// taken from https://github.com/Logan007/pearson
#include <stddef.h>
#include <stdint.h>
#include "pearson.h"
// table as in original paper "Fast Hashing of Variable-Length Text Strings" by Peter K. Pearson
// as published in The Communications of the ACM Vol.33, No. 6 (June 1990), pp. 677-680.
static const uint8_t t[256] ={
0x01, 0x57, 0x31, 0x0c, 0xb0, 0xb2, 0x66, 0xa6, 0x79, 0xc1, 0x06, 0x54, 0xf9, 0xe6, 0x2c, 0xa3,
0x0e, 0xc5, 0xd5, 0xb5, 0xa1, 0x55, 0xda, 0x50, 0x40, 0xef, 0x18, 0xe2, 0xec, 0x8e, 0x26, 0xc8,
0x6e, 0xb1, 0x68, 0x67, 0x8d, 0xfd, 0xff, 0x32, 0x4d, 0x65, 0x51, 0x12, 0x2d, 0x60, 0x1f, 0xde,
0x19, 0x6b, 0xbe, 0x46, 0x56, 0xed, 0xf0, 0x22, 0x48, 0xf2, 0x14, 0xd6, 0xf4, 0xe3, 0x95, 0xeb,
0x61, 0xea, 0x39, 0x16, 0x3c, 0xfa, 0x52, 0xaf, 0xd0, 0x05, 0x7f, 0xc7, 0x6f, 0x3e, 0x87, 0xf8,
0xae, 0xa9, 0xd3, 0x3a, 0x42, 0x9a, 0x6a, 0xc3, 0xf5, 0xab, 0x11, 0xbb, 0xb6, 0xb3, 0x00, 0xf3,
0x84, 0x38, 0x94, 0x4b, 0x80, 0x85, 0x9e, 0x64, 0x82, 0x7e, 0x5b, 0x0d, 0x99, 0xf6, 0xd8, 0xdb,
0x77, 0x44, 0xdf, 0x4e, 0x53, 0x58, 0xc9, 0x63, 0x7a, 0x0b, 0x5c, 0x20, 0x88, 0x72, 0x34, 0x0a,
0x8a, 0x1e, 0x30, 0xb7, 0x9c, 0x23, 0x3d, 0x1a, 0x8f, 0x4a, 0xfb, 0x5e, 0x81, 0xa2, 0x3f, 0x98,
0xaa, 0x07, 0x73, 0xa7, 0xf1, 0xce, 0x03, 0x96, 0x37, 0x3b, 0x97, 0xdc, 0x5a, 0x35, 0x17, 0x83,
0x7d, 0xad, 0x0f, 0xee, 0x4f, 0x5f, 0x59, 0x10, 0x69, 0x89, 0xe1, 0xe0, 0xd9, 0xa0, 0x25, 0x7b,
0x76, 0x49, 0x02, 0x9d, 0x2e, 0x74, 0x09, 0x91, 0x86, 0xe4, 0xcf, 0xd4, 0xca, 0xd7, 0x45, 0xe5,
0x1b, 0xbc, 0x43, 0x7c, 0xa8, 0xfc, 0x2a, 0x04, 0x1d, 0x6c, 0x15, 0xf7, 0x13, 0xcd, 0x27, 0xcb,
0xe9, 0x28, 0xba, 0x93, 0xc6, 0xc0, 0x9b, 0x21, 0xa4, 0xbf, 0x62, 0xcc, 0xa5, 0xb4, 0x75, 0x4c,
0x8c, 0x24, 0xd2, 0xac, 0x29, 0x36, 0x9f, 0x08, 0xb9, 0xe8, 0x71, 0xc4, 0xe7, 0x2f, 0x92, 0x78,
0x33, 0x41, 0x1c, 0x90, 0xfe, 0xdd, 0x5d, 0xbd, 0xc2, 0x8b, 0x70, 0x2b, 0x47, 0x6d, 0xb8, 0xd1 };
/*
// alternative table as used in RFC 3074 and NOT as in original paper
static const uint8_t t[256] ={
0xfb, 0xaf, 0x77, 0xd7, 0x51, 0x0e, 0x4f, 0xbf, 0x67, 0x31, 0xb5, 0x8f, 0xba, 0x9d, 0x00, 0xe8,
0x1f, 0x20, 0x37, 0x3c, 0x98, 0x3a, 0x11, 0xed, 0xae, 0x46, 0xa0, 0x90, 0xdc, 0x5a, 0x39, 0xdf,
0x3b, 0x03, 0x12, 0x8c, 0x6f, 0xa6, 0xcb, 0xc4, 0x86, 0xf3, 0x7c, 0x5f, 0xde, 0xb3, 0xc5, 0x41,
0xb4, 0x30, 0x24, 0x0f, 0x6b, 0x2e, 0xe9, 0x82, 0xa5, 0x1e, 0x7b, 0xa1, 0xd1, 0x17, 0x61, 0x10,
0x28, 0x5b, 0xdb, 0x3d, 0x64, 0x0a, 0xd2, 0x6d, 0xfa, 0x7f, 0x16, 0x8a, 0x1d, 0x6c, 0xf4, 0x43,
0xcf, 0x09, 0xb2, 0xcc, 0x4a, 0x62, 0x7e, 0xf9, 0xa7, 0x74, 0x22, 0x4d, 0xc1, 0xc8, 0x79, 0x05,
0x14, 0x71, 0x47, 0x23, 0x80, 0x0d, 0xb6, 0x5e, 0x19, 0xe2, 0xe3, 0xc7, 0x4b, 0x1b, 0x29, 0xf5,
0xe6, 0xe0, 0x2b, 0xe1, 0xb1, 0x1a, 0x9b, 0x96, 0xd4, 0x8e, 0xda, 0x73, 0xf1, 0x49, 0x58, 0x69,
0x27, 0x72, 0x3e, 0xff, 0xc0, 0xc9, 0x91, 0xd6, 0xa8, 0x9e, 0xdd, 0x94, 0x9a, 0x7a, 0x0c, 0x54,
0x52, 0xa3, 0x2c, 0x8b, 0xe4, 0xec, 0xcd, 0xf2, 0xd9, 0x0b, 0xbb, 0x92, 0x9f, 0x40, 0x56, 0xef,
0xc3, 0x2a, 0x6a, 0xc6, 0x76, 0x70, 0xb8, 0xac, 0x57, 0x02, 0xad, 0x75, 0xb0, 0xe5, 0xf7, 0xfd,
0x89, 0xb9, 0x63, 0xa4, 0x66, 0x93, 0x2d, 0x42, 0xe7, 0x34, 0x8d, 0xd3, 0xc2, 0xce, 0xf6, 0xee,
0x38, 0x6e, 0x4e, 0xf8, 0x3f, 0xf0, 0xbd, 0x5d, 0x5c, 0x33, 0x35, 0xb7, 0x13, 0xab, 0x48, 0x32,
0x21, 0x68, 0x65, 0x45, 0x08, 0xfc, 0x53, 0x78, 0x4c, 0x87, 0x55, 0x36, 0xca, 0x7d, 0xbc, 0xd5,
0x60, 0xeb, 0x88, 0xd0, 0xa2, 0x81, 0xbe, 0x84, 0x9c, 0x26, 0x2f, 0x01, 0x07, 0xfe, 0x18, 0x04,
0xd8, 0x83, 0x59, 0x15, 0x1c, 0x85, 0x25, 0x99, 0x95, 0x50, 0xaa, 0x44, 0x06, 0xa9, 0xea, 0x97 }; */
#define ROR64(x,r) (((x)>>(r))|((x)<<(64-(r))))
void pearson_hash_256 (uint8_t *out, const uint8_t *in, size_t len) {
/* initial values - astonishingly, assembling using SHIFTs and ORs (in register)
* works faster on well pipelined CPUs than loading the 64-bit value from memory.
* however, there is one advantage to loading from memory: as we also store back to
* memory at the end, we do not need to care about endianess! */
uint8_t upper[8] = { 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
uint8_t lower[8] = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00 };
uint64_t upper_hash_mask = *(uint64_t*)&upper;
uint64_t lower_hash_mask = *(uint64_t*)&lower;
uint64_t high_upper_hash_mask = upper_hash_mask + 0x1010101010101010;
uint64_t high_lower_hash_mask = lower_hash_mask + 0x1010101010101010;
uint64_t upper_hash = 0;
uint64_t lower_hash = 0;
uint64_t high_upper_hash = 0;
uint64_t high_lower_hash = 0;
for (size_t i = 0; i < len; i++) {
// broadcast the character, xor into hash, make them different permutations
uint64_t c = (uint8_t)in[i];
c |= c << 8;
c |= c << 16;
c |= c << 32;
upper_hash ^= c ^ upper_hash_mask;
lower_hash ^= c ^ lower_hash_mask;
high_upper_hash ^= c ^ high_upper_hash_mask;
high_lower_hash ^= c ^ high_lower_hash_mask;
// table lookup
uint8_t x;
uint64_t h = 0;
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8);
upper_hash = h;
h = 0;
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8);
lower_hash = h;
h = 0;
x = high_upper_hash; x = t[x]; high_upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_upper_hash; x = t[x]; high_upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_upper_hash; x = t[x]; high_upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_upper_hash; x = t[x]; high_upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_upper_hash; x = t[x]; high_upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_upper_hash; x = t[x]; high_upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_upper_hash; x = t[x]; high_upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_upper_hash; x = t[x]; high_upper_hash >>= 8; h |= x; h=ROR64(h,8);
high_upper_hash = h;
h = 0;
x = high_lower_hash; x = t[x]; high_lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_lower_hash; x = t[x]; high_lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_lower_hash; x = t[x]; high_lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_lower_hash; x = t[x]; high_lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_lower_hash; x = t[x]; high_lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_lower_hash; x = t[x]; high_lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_lower_hash; x = t[x]; high_lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = high_lower_hash; x = t[x]; high_lower_hash >>= 8; h |= x; h=ROR64(h,8);
high_lower_hash = h;
}
// store output
uint64_t *o;
o = (uint64_t*)&out[0];
*o = high_upper_hash;
o = (uint64_t*)&out[8];
*o = high_lower_hash;
o = (uint64_t*)&out[16];
*o = upper_hash;
o = (uint64_t*)&out[24];
*o = lower_hash;
}
void pearson_hash_128 (uint8_t *out, const uint8_t *in, size_t len) {
/* initial values - astonishingly, assembling using SHIFTs and ORs (in register)
* works faster on well pipelined CPUs than loading the 64-bit value from memory.
* however, there is one advantage to loading from memory: as we also store back to
* memory at the end, we do not need to care about endianess! */
uint8_t upper[8] = { 0x0F, 0x0E, 0x0D, 0x0C, 0x0B, 0x0A, 0x09, 0x08 };
uint8_t lower[8] = { 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00 };
uint64_t upper_hash_mask = *(uint64_t*)&upper;
uint64_t lower_hash_mask = *(uint64_t*)&lower;
uint64_t upper_hash = 0;
uint64_t lower_hash = 0;
for (size_t i = 0; i < len; i++) {
// broadcast the character, xor into hash, make them different permutations
uint64_t c = (uint8_t)in[i];
c |= c << 8;
c |= c << 16;
c |= c << 32;
upper_hash ^= c ^ upper_hash_mask;
lower_hash ^= c ^ lower_hash_mask;
// table lookup
uint8_t x;
uint64_t h = 0;
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8);
x = upper_hash; x = t[x]; upper_hash >>= 8; h |= x; h=ROR64(h,8);
upper_hash = h;
h = 0;
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8);
x = lower_hash; x = t[x]; lower_hash >>= 8; h |= x; h=ROR64(h,8);
lower_hash = h;
}
// store output
uint64_t *o;
o = (uint64_t*)&out[0];
*o = upper_hash;
o = (uint64_t*)&out[8];
*o = lower_hash;
}

3
pearson.h

@ -0,0 +1,3 @@
void pearson_hash_256 (uint8_t *out, const uint8_t *in, size_t len);
void pearson_hash_128 (uint8_t *out, const uint8_t *in, size_t len);

7
speck.h

@ -2,6 +2,10 @@
// taken from (and modified: removed pure crypto-stream generation and seperated key expansion)
// https://github.com/nsacyber/simon-speck-supercop/blob/master/crypto_stream/speck128256ctr/
#ifndef SPECK_H
#define SPECK_H
#define u32 uint32_t
#define u64 uint64_t
@ -61,3 +65,6 @@ int speck_he (unsigned char *out, const unsigned char *in, unsigned long long in
int speck_expand_key_he (const unsigned char *k, speck_context_t *ctx);
#endif

Loading…
Cancel
Save