|
|
@ -27,27 +27,29 @@ |
|
|
|
// might encounter an issue with lower values here
|
|
|
|
#define AES_PREAMBLE_SIZE (AES_BLOCK_SIZE) |
|
|
|
|
|
|
|
|
|
|
|
// cts/cbc mode is being used with random value prepended to plaintext
|
|
|
|
// instead of iv so, actual iv is aes_null_iv
|
|
|
|
const uint8_t aes_null_iv[AES_IV_SIZE] = {0}; |
|
|
|
const uint8_t aes_null_iv[AES_IV_SIZE] = { 0 }; |
|
|
|
|
|
|
|
typedef struct transop_aes { |
|
|
|
aes_context_t *ctx; |
|
|
|
aes_context_t *ctx; |
|
|
|
} transop_aes_t; |
|
|
|
|
|
|
|
/* ****************************************************** */ |
|
|
|
|
|
|
|
static int transop_deinit_aes(n2n_trans_op_t *arg) { |
|
|
|
transop_aes_t *priv = (transop_aes_t *)arg->priv; |
|
|
|
static int transop_deinit_aes (n2n_trans_op_t *arg) { |
|
|
|
|
|
|
|
transop_aes_t *priv = (transop_aes_t *)arg->priv; |
|
|
|
|
|
|
|
if(priv->ctx) aes_deinit(priv->ctx); |
|
|
|
if(priv->ctx) |
|
|
|
aes_deinit(priv->ctx); |
|
|
|
|
|
|
|
if(priv) free(priv); |
|
|
|
if(priv) |
|
|
|
free(priv); |
|
|
|
|
|
|
|
return 0; |
|
|
|
return 0; |
|
|
|
} |
|
|
|
|
|
|
|
/* ****************************************************** */ |
|
|
|
|
|
|
|
// the aes packet format consists of
|
|
|
|
//
|
|
|
@ -58,187 +60,187 @@ static int transop_deinit_aes(n2n_trans_op_t *arg) { |
|
|
|
// [VV|DDDDDDDDDDDDDDDDDDDDD]
|
|
|
|
// | <---- encrypted ----> |
|
|
|
|
//
|
|
|
|
static int transop_encode_aes(n2n_trans_op_t * arg, |
|
|
|
uint8_t * outbuf, |
|
|
|
size_t out_len, |
|
|
|
const uint8_t * inbuf, |
|
|
|
size_t in_len, |
|
|
|
const uint8_t * peer_mac) { |
|
|
|
|
|
|
|
transop_aes_t * priv = (transop_aes_t *)arg->priv; |
|
|
|
|
|
|
|
// the assembly buffer is a source for encrypting data
|
|
|
|
// the whole contents of assembly are encrypted
|
|
|
|
uint8_t assembly[N2N_PKT_BUF_SIZE]; |
|
|
|
size_t idx = 0; |
|
|
|
int padded_len; |
|
|
|
uint8_t padding; |
|
|
|
uint8_t buf[AES_BLOCK_SIZE]; |
|
|
|
|
|
|
|
if(in_len <= N2N_PKT_BUF_SIZE) { |
|
|
|
if((in_len + AES_PREAMBLE_SIZE + AES_BLOCK_SIZE) <= out_len) { |
|
|
|
|
|
|
|
traceEvent(TRACE_DEBUG, "transop_encode_aes %lu bytes plaintext", in_len); |
|
|
|
|
|
|
|
// full block sized random value (128 bit)
|
|
|
|
encode_uint64(assembly, &idx, n2n_rand()); |
|
|
|
encode_uint64(assembly, &idx, n2n_rand()); |
|
|
|
// adjust for maybe differently chosen AES_PREAMBLE_SIZE
|
|
|
|
idx = AES_PREAMBLE_SIZE; |
|
|
|
|
|
|
|
// the plaintext data
|
|
|
|
encode_buf(assembly, &idx, inbuf, in_len); |
|
|
|
|
|
|
|
// round up to next whole AES block size
|
|
|
|
padded_len = (((idx - 1) / AES_BLOCK_SIZE) + 1) * AES_BLOCK_SIZE; |
|
|
|
padding = (padded_len-idx); |
|
|
|
// pad the following bytes with zero, fixed length (AES_BLOCK_SIZE) seems to compile
|
|
|
|
// to slightly faster code than run-time dependant 'padding'
|
|
|
|
memset (assembly + idx, 0, AES_BLOCK_SIZE); |
|
|
|
|
|
|
|
aes_cbc_encrypt(outbuf, assembly, padded_len, aes_null_iv, priv->ctx); |
|
|
|
|
|
|
|
if(padding) { |
|
|
|
// exchange last two cipher blocks
|
|
|
|
memcpy (buf, outbuf+padded_len - AES_BLOCK_SIZE, AES_BLOCK_SIZE); |
|
|
|
memcpy (outbuf + padded_len - AES_BLOCK_SIZE, outbuf + padded_len - 2 * AES_BLOCK_SIZE, AES_BLOCK_SIZE); |
|
|
|
memcpy (outbuf + padded_len - 2 * AES_BLOCK_SIZE, buf, AES_BLOCK_SIZE); |
|
|
|
} |
|
|
|
static int transop_encode_aes (n2n_trans_op_t *arg, |
|
|
|
uint8_t *outbuf, |
|
|
|
size_t out_len, |
|
|
|
const uint8_t *inbuf, |
|
|
|
size_t in_len, |
|
|
|
const uint8_t *peer_mac) { |
|
|
|
|
|
|
|
transop_aes_t *priv = (transop_aes_t *)arg->priv; |
|
|
|
|
|
|
|
// the assembly buffer is a source for encrypting data
|
|
|
|
// the whole contents of assembly are encrypted
|
|
|
|
uint8_t assembly[N2N_PKT_BUF_SIZE]; |
|
|
|
size_t idx = 0; |
|
|
|
int padded_len; |
|
|
|
uint8_t padding; |
|
|
|
uint8_t buf[AES_BLOCK_SIZE]; |
|
|
|
|
|
|
|
if(in_len <= N2N_PKT_BUF_SIZE) { |
|
|
|
if((in_len + AES_PREAMBLE_SIZE + AES_BLOCK_SIZE) <= out_len) { |
|
|
|
traceEvent(TRACE_DEBUG, "transop_encode_aes %lu bytes plaintext", in_len); |
|
|
|
|
|
|
|
// full block sized random value (128 bit)
|
|
|
|
encode_uint64(assembly, &idx, n2n_rand()); |
|
|
|
encode_uint64(assembly, &idx, n2n_rand()); |
|
|
|
|
|
|
|
// adjust for maybe differently chosen AES_PREAMBLE_SIZE
|
|
|
|
idx = AES_PREAMBLE_SIZE; |
|
|
|
|
|
|
|
// the plaintext data
|
|
|
|
encode_buf(assembly, &idx, inbuf, in_len); |
|
|
|
|
|
|
|
// round up to next whole AES block size
|
|
|
|
padded_len = (((idx - 1) / AES_BLOCK_SIZE) + 1) * AES_BLOCK_SIZE; |
|
|
|
padding = (padded_len-idx); |
|
|
|
|
|
|
|
// pad the following bytes with zero, fixed length (AES_BLOCK_SIZE) seems to compile
|
|
|
|
// to slightly faster code than run-time dependant 'padding'
|
|
|
|
memset(assembly + idx, 0, AES_BLOCK_SIZE); |
|
|
|
|
|
|
|
aes_cbc_encrypt(outbuf, assembly, padded_len, aes_null_iv, priv->ctx); |
|
|
|
|
|
|
|
if(padding) { |
|
|
|
// exchange last two cipher blocks
|
|
|
|
memcpy(buf, outbuf+padded_len - AES_BLOCK_SIZE, AES_BLOCK_SIZE); |
|
|
|
memcpy(outbuf + padded_len - AES_BLOCK_SIZE, outbuf + padded_len - 2 * AES_BLOCK_SIZE, AES_BLOCK_SIZE); |
|
|
|
memcpy(outbuf + padded_len - 2 * AES_BLOCK_SIZE, buf, AES_BLOCK_SIZE); |
|
|
|
} |
|
|
|
} else |
|
|
|
traceEvent(TRACE_ERROR, "transop_encode_aes outbuf too small"); |
|
|
|
} else |
|
|
|
traceEvent(TRACE_ERROR, "transop_encode_aes outbuf too small"); |
|
|
|
} else |
|
|
|
traceEvent(TRACE_ERROR, "transop_encode_aes inbuf too big to encrypt"); |
|
|
|
|
|
|
|
return idx; |
|
|
|
return idx; |
|
|
|
} |
|
|
|
|
|
|
|
/* ****************************************************** */ |
|
|
|
|
|
|
|
// see transop_encode_aes for packet format
|
|
|
|
static int transop_decode_aes(n2n_trans_op_t * arg, |
|
|
|
uint8_t * outbuf, |
|
|
|
size_t out_len, |
|
|
|
const uint8_t * inbuf, |
|
|
|
size_t in_len, |
|
|
|
const uint8_t * peer_mac) { |
|
|
|
|
|
|
|
transop_aes_t * priv = (transop_aes_t *)arg->priv; |
|
|
|
uint8_t assembly[N2N_PKT_BUF_SIZE]; |
|
|
|
|
|
|
|
uint8_t rest; |
|
|
|
size_t penultimate_block; |
|
|
|
uint8_t buf[AES_BLOCK_SIZE]; |
|
|
|
int len=-1; |
|
|
|
|
|
|
|
if( ((in_len - AES_PREAMBLE_SIZE) <= N2N_PKT_BUF_SIZE) // cipher text fits in assembly
|
|
|
|
&& (in_len >= AES_PREAMBLE_SIZE) // has at least random number
|
|
|
|
&& (in_len >= AES_BLOCK_SIZE) // minimum size requirement for cipher text stealing
|
|
|
|
) { |
|
|
|
|
|
|
|
traceEvent(TRACE_DEBUG, "transop_decode_aes %lu bytes ciphertext", in_len); |
|
|
|
|
|
|
|
rest = in_len % AES_BLOCK_SIZE; |
|
|
|
if(rest) { |
|
|
|
// cipher text stealing
|
|
|
|
penultimate_block = ((in_len / AES_BLOCK_SIZE) - 1) * AES_BLOCK_SIZE; |
|
|
|
// everything normal up to penultimate block
|
|
|
|
memcpy(assembly, inbuf, penultimate_block); |
|
|
|
// prepare new penultimate block in buf
|
|
|
|
aes_ecb_decrypt(buf, inbuf + penultimate_block, priv->ctx); |
|
|
|
memcpy(buf, inbuf + in_len - rest, rest); |
|
|
|
// former penultimate block becomes new ultimate block
|
|
|
|
memcpy(assembly + penultimate_block + AES_BLOCK_SIZE, inbuf + penultimate_block, AES_BLOCK_SIZE); |
|
|
|
// write new penultimate block from buf
|
|
|
|
memcpy(assembly + penultimate_block, buf, AES_BLOCK_SIZE); |
|
|
|
// regular cbc decryption on the re-arranged ciphertext
|
|
|
|
aes_cbc_decrypt(assembly, assembly, in_len + AES_BLOCK_SIZE - rest, aes_null_iv, priv->ctx); |
|
|
|
// check for expected zero padding and give a warning otherwise
|
|
|
|
if (memcmp(assembly + in_len, aes_null_iv, AES_BLOCK_SIZE - rest)) { |
|
|
|
traceEvent(TRACE_WARNING, "transop_decode_aes payload decryption failed with unexpected cipher text stealing padding"); |
|
|
|
return -1; |
|
|
|
} |
|
|
|
static int transop_decode_aes (n2n_trans_op_t *arg, |
|
|
|
uint8_t *outbuf, |
|
|
|
size_t out_len, |
|
|
|
const uint8_t *inbuf, |
|
|
|
size_t in_len, |
|
|
|
const uint8_t *peer_mac) { |
|
|
|
|
|
|
|
transop_aes_t *priv = (transop_aes_t *)arg->priv; |
|
|
|
uint8_t assembly[N2N_PKT_BUF_SIZE]; |
|
|
|
|
|
|
|
uint8_t rest; |
|
|
|
size_t penultimate_block; |
|
|
|
uint8_t buf[AES_BLOCK_SIZE]; |
|
|
|
int len = -1; |
|
|
|
|
|
|
|
if(((in_len - AES_PREAMBLE_SIZE) <= N2N_PKT_BUF_SIZE) /* cipher text fits in assembly */ |
|
|
|
&& (in_len >= AES_PREAMBLE_SIZE) /* has at least random number */ |
|
|
|
&& (in_len >= AES_BLOCK_SIZE)) { /* minimum size requirement for cipher text stealing */ |
|
|
|
traceEvent(TRACE_DEBUG, "transop_decode_aes %lu bytes ciphertext", in_len); |
|
|
|
|
|
|
|
rest = in_len % AES_BLOCK_SIZE; |
|
|
|
if(rest) { /* cipher text stealing */ |
|
|
|
penultimate_block = ((in_len / AES_BLOCK_SIZE) - 1) * AES_BLOCK_SIZE; |
|
|
|
|
|
|
|
// everything normal up to penultimate block
|
|
|
|
memcpy(assembly, inbuf, penultimate_block); |
|
|
|
|
|
|
|
// prepare new penultimate block in buf
|
|
|
|
aes_ecb_decrypt(buf, inbuf + penultimate_block, priv->ctx); |
|
|
|
memcpy(buf, inbuf + in_len - rest, rest); |
|
|
|
|
|
|
|
// former penultimate block becomes new ultimate block
|
|
|
|
memcpy(assembly + penultimate_block + AES_BLOCK_SIZE, inbuf + penultimate_block, AES_BLOCK_SIZE); |
|
|
|
|
|
|
|
// write new penultimate block from buf
|
|
|
|
memcpy(assembly + penultimate_block, buf, AES_BLOCK_SIZE); |
|
|
|
|
|
|
|
// regular cbc decryption of the re-arranged ciphertext
|
|
|
|
aes_cbc_decrypt(assembly, assembly, in_len + AES_BLOCK_SIZE - rest, aes_null_iv, priv->ctx); |
|
|
|
|
|
|
|
// check for expected zero padding and give a warning otherwise
|
|
|
|
if(memcmp(assembly + in_len, aes_null_iv, AES_BLOCK_SIZE - rest)) { |
|
|
|
traceEvent(TRACE_WARNING, "transop_decode_aes payload decryption failed with unexpected cipher text stealing padding"); |
|
|
|
return -1; |
|
|
|
} |
|
|
|
} else { |
|
|
|
// regular cbc decryption on multiple block-sized payload
|
|
|
|
aes_cbc_decrypt(assembly, inbuf, in_len, aes_null_iv, priv->ctx); |
|
|
|
} |
|
|
|
len = in_len - AES_PREAMBLE_SIZE; |
|
|
|
memcpy(outbuf, assembly + AES_PREAMBLE_SIZE, len); |
|
|
|
} else |
|
|
|
traceEvent(TRACE_ERROR, "transop_decode_aes inbuf wrong size (%ul) to decrypt", in_len); |
|
|
|
|
|
|
|
return len; |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
static int setup_aes_key (transop_aes_t *priv, const uint8_t *password, ssize_t password_len) { |
|
|
|
|
|
|
|
unsigned char key_mat[32]; /* maximum aes key length, equals hash length */ |
|
|
|
unsigned char *key; |
|
|
|
size_t key_size; |
|
|
|
|
|
|
|
// let the user choose the degree of encryption:
|
|
|
|
// long input passwords will pick AES192 or AES256 with more robust but expensive encryption
|
|
|
|
|
|
|
|
// the input password always gets hashed to make a more unpredictable use of the key space
|
|
|
|
// just think of usually reset MSB of ASCII coded password bytes
|
|
|
|
pearson_hash_256(key_mat, password, password_len); |
|
|
|
|
|
|
|
// the length-dependant scheme for key setup was discussed on github:
|
|
|
|
// https://github.com/ntop/n2n/issues/101 -- as no iv encryption required
|
|
|
|
// anymore, the key-size trigger values were roughly halved
|
|
|
|
if(password_len >= 33) { |
|
|
|
key_size = AES256_KEY_BYTES; /* 256 bit */ |
|
|
|
} else if(password_len >= 23) { |
|
|
|
key_size = AES192_KEY_BYTES; /* 192 bit */ |
|
|
|
} else { |
|
|
|
// regular cbc decryption on multiple block-sized payload
|
|
|
|
aes_cbc_decrypt(assembly, inbuf, in_len, aes_null_iv, priv->ctx); |
|
|
|
key_size = AES128_KEY_BYTES; /* 128 bit */ |
|
|
|
} |
|
|
|
len = in_len - AES_PREAMBLE_SIZE; |
|
|
|
memcpy(outbuf, |
|
|
|
assembly + AES_PREAMBLE_SIZE, |
|
|
|
len); |
|
|
|
} else |
|
|
|
traceEvent(TRACE_ERROR, "transop_decode_aes inbuf wrong size (%ul) to decrypt", in_len); |
|
|
|
|
|
|
|
return len; |
|
|
|
} |
|
|
|
|
|
|
|
/* ****************************************************** */ |
|
|
|
|
|
|
|
static int setup_aes_key(transop_aes_t *priv, const uint8_t *password, ssize_t password_len) { |
|
|
|
|
|
|
|
unsigned char key_mat[32]; // maximum aes key length, equals hash length
|
|
|
|
unsigned char *key; |
|
|
|
size_t key_size; |
|
|
|
|
|
|
|
// let the user choose the degree of encryption:
|
|
|
|
// long input passwords will pick AES192 or AES256 with more robust but expensive encryption
|
|
|
|
|
|
|
|
// the input password always gets hashed to make a more unpredictable use of the key space
|
|
|
|
// just think of usually reset MSB of ASCII coded password bytes
|
|
|
|
pearson_hash_256(key_mat, password, password_len); |
|
|
|
|
|
|
|
// the length-dependant scheme for key setup was discussed on github:
|
|
|
|
// https://github.com/ntop/n2n/issues/101 -- as no iv encryption required
|
|
|
|
// anymore, the key-size trigger values were roughly halved
|
|
|
|
if(password_len >= 33) { |
|
|
|
key_size = AES256_KEY_BYTES; // 256 bit
|
|
|
|
} else if(password_len >= 23) { |
|
|
|
key_size = AES192_KEY_BYTES; // 192 bit
|
|
|
|
} else { |
|
|
|
key_size = AES128_KEY_BYTES; // 128 bit
|
|
|
|
} |
|
|
|
// and use the last key-sized part of the hash as aes key
|
|
|
|
key = key_mat + sizeof(key_mat) - key_size; |
|
|
|
|
|
|
|
// setup the key and have corresponding context created
|
|
|
|
if (aes_init (key, key_size, &(priv->ctx))) { |
|
|
|
traceEvent(TRACE_ERROR, "setup_aes_key %u-bit key setup unsuccessful", |
|
|
|
key_size * 8); |
|
|
|
return -1; |
|
|
|
} |
|
|
|
|
|
|
|
traceEvent(TRACE_DEBUG, "setup_aes_key %u-bit key setup completed", |
|
|
|
key_size * 8); |
|
|
|
return 0; |
|
|
|
// and use the last key-sized part of the hash as aes key
|
|
|
|
key = key_mat + sizeof(key_mat) - key_size; |
|
|
|
|
|
|
|
// setup the key and have corresponding context created
|
|
|
|
if(aes_init (key, key_size, &(priv->ctx))) { |
|
|
|
traceEvent(TRACE_ERROR, "setup_aes_key %u-bit key setup unsuccessful", key_size * 8); |
|
|
|
return -1; |
|
|
|
} |
|
|
|
traceEvent(TRACE_DEBUG, "setup_aes_key %u-bit key setup completed", key_size * 8); |
|
|
|
|
|
|
|
return 0; |
|
|
|
} |
|
|
|
|
|
|
|
/* ****************************************************** */ |
|
|
|
|
|
|
|
static void transop_tick_aes(n2n_trans_op_t * arg, time_t now) { ; } |
|
|
|
static void transop_tick_aes (n2n_trans_op_t *arg, time_t now) { |
|
|
|
|
|
|
|
// no tick action
|
|
|
|
} |
|
|
|
|
|
|
|
/* ****************************************************** */ |
|
|
|
|
|
|
|
// AES initialization function
|
|
|
|
int n2n_transop_aes_init(const n2n_edge_conf_t *conf, n2n_trans_op_t *ttt) { |
|
|
|
int n2n_transop_aes_init (const n2n_edge_conf_t *conf, n2n_trans_op_t *ttt) { |
|
|
|
|
|
|
|
transop_aes_t *priv; |
|
|
|
const u_char *encrypt_key = (const u_char *)conf->encrypt_key; |
|
|
|
size_t encrypt_key_len = strlen(conf->encrypt_key); |
|
|
|
transop_aes_t *priv; |
|
|
|
const u_char *encrypt_key = (const u_char *)conf->encrypt_key; |
|
|
|
size_t encrypt_key_len = strlen(conf->encrypt_key); |
|
|
|
|
|
|
|
memset(ttt, 0, sizeof(*ttt)); |
|
|
|
ttt->transform_id = N2N_TRANSFORM_ID_AES; |
|
|
|
memset(ttt, 0, sizeof(*ttt)); |
|
|
|
ttt->transform_id = N2N_TRANSFORM_ID_AES; |
|
|
|
|
|
|
|
ttt->tick = transop_tick_aes; |
|
|
|
ttt->deinit = transop_deinit_aes; |
|
|
|
ttt->fwd = transop_encode_aes; |
|
|
|
ttt->rev = transop_decode_aes; |
|
|
|
ttt->tick = transop_tick_aes; |
|
|
|
ttt->deinit = transop_deinit_aes; |
|
|
|
ttt->fwd = transop_encode_aes; |
|
|
|
ttt->rev = transop_decode_aes; |
|
|
|
|
|
|
|
priv = (transop_aes_t*) calloc(1, sizeof(transop_aes_t)); |
|
|
|
if(!priv) { |
|
|
|
traceEvent(TRACE_ERROR, "n2n_transop_aes_init cannot allocate transop_aes_t memory"); |
|
|
|
return(-1); |
|
|
|
} |
|
|
|
ttt->priv = priv; |
|
|
|
priv = (transop_aes_t*)calloc(1, sizeof(transop_aes_t)); |
|
|
|
if(!priv) { |
|
|
|
traceEvent(TRACE_ERROR, "n2n_transop_aes_init cannot allocate transop_aes_t memory"); |
|
|
|
return -1; |
|
|
|
} |
|
|
|
ttt->priv = priv; |
|
|
|
|
|
|
|
// setup the cipher and key
|
|
|
|
return(setup_aes_key(priv, encrypt_key, encrypt_key_len)); |
|
|
|
// setup the cipher and key
|
|
|
|
return setup_aes_key(priv, encrypt_key, encrypt_key_len); |
|
|
|
} |
|
|
|