You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2413 lines
72 KiB

/**
* (C) 2007-09 - Luca Deri <deri@ntop.org>
* Richard Andrews <andrews@ntop.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not see see <http://www.gnu.org/licenses/>
*
* Code contributions courtesy of:
* Don Bindner <don.bindner@gmail.com>
* Sylwester Sosnowski <syso-n2n@no-route.org>
* Wilfried "Wonka" Klaebe
* Lukasz Taczuk
*
*/
#include "n2n.h"
#include "n2n_transforms.h"
#include <assert.h>
#include <sys/stat.h>
#include "minilzo.h"
#if defined(DEBUG)
#define SOCKET_TIMEOUT_INTERVAL_SECS 5
#define REGISTER_SUPER_INTERVAL_DFL 20 /* sec */
#else /* #if defined(DEBUG) */
#define SOCKET_TIMEOUT_INTERVAL_SECS 10
#define REGISTER_SUPER_INTERVAL_DFL 60 /* sec */
#endif /* #if defined(DEBUG) */
#define REGISTER_SUPER_INTERVAL_MIN 20 /* sec */
#define REGISTER_SUPER_INTERVAL_MAX 3600 /* sec */
#define IFACE_UPDATE_INTERVAL (30) /* sec. How long it usually takes to get an IP lease. */
#define TRANSOP_TICK_INTERVAL (10) /* sec */
/** maximum length of command line arguments */
#define MAX_CMDLINE_BUFFER_LENGTH 4096
/** maximum length of a line in the configuration file */
#define MAX_CONFFILE_LINE_LENGTH 1024
#define N2N_PATHNAME_MAXLEN 256
#define N2N_MAX_TRANSFORMS 16
#define N2N_EDGE_MGMT_PORT 5644
/** Positions in the transop array where various transforms are stored.
*
* Used by transop_enum_to_index(). See also the transform enumerations in
* n2n_transforms.h */
#define N2N_TRANSOP_NULL_IDX 0
#define N2N_TRANSOP_TF_IDX 1
#define N2N_TRANSOP_AESCBC_IDX 2
/* etc. */
/* Work-memory needed for compression. Allocate memory in units
* of `lzo_align_t' (instead of `char') to make sure it is properly aligned.
*/
/* #define HEAP_ALLOC(var,size) \ */
/* lzo_align_t __LZO_MMODEL var [ ((size) + (sizeof(lzo_align_t) - 1)) / sizeof(lzo_align_t) ] */
/* static HEAP_ALLOC(wrkmem,LZO1X_1_MEM_COMPRESS); */
/* ******************************************************* */
#define N2N_EDGE_SN_HOST_SIZE 48
typedef char n2n_sn_name_t[N2N_EDGE_SN_HOST_SIZE];
#define N2N_EDGE_NUM_SUPERNODES 2
#define N2N_EDGE_SUP_ATTEMPTS 3 /* Number of failed attmpts before moving on to next supernode. */
/** Main structure type for edge. */
struct n2n_edge
{
int daemon; /**< Non-zero if edge should detach and run in the background. */
uint8_t re_resolve_supernode_ip;
n2n_sock_t supernode;
size_t sn_idx; /**< Currently active supernode. */
size_t sn_num; /**< Number of supernode addresses defined. */
n2n_sn_name_t sn_ip_array[N2N_EDGE_NUM_SUPERNODES];
int sn_wait; /**< Whether we are waiting for a supernode response. */
n2n_community_t community_name; /**< The community. 16 full octets. */
char keyschedule[N2N_PATHNAME_MAXLEN];
int null_transop; /**< Only allowed if no key sources defined. */
int udp_sock;
int udp_mgmt_sock; /**< socket for status info. */
tuntap_dev device; /**< All about the TUNTAP device */
int dyn_ip_mode; /**< Interface IP address is dynamically allocated, eg. DHCP. */
int allow_routing; /**< Accept packet no to interface address. */
int drop_multicast; /**< Multicast ethernet addresses. */
n2n_trans_op_t transop[N2N_MAX_TRANSFORMS]; /* one for each transform at fixed positions */
size_t tx_transop_idx; /**< The transop to use when encoding. */
struct peer_info * known_peers; /**< Edges we are connected to. */
struct peer_info * pending_peers; /**< Edges we have tried to register with. */
time_t last_register_req; /**< Check if time to re-register with super*/
size_t register_lifetime; /**< Time distance after last_register_req at which to re-register. */
time_t last_p2p; /**< Last time p2p traffic was received. */
time_t last_sup; /**< Last time a packet arrived from supernode. */
size_t sup_attempts; /**< Number of remaining attempts to this supernode. */
n2n_cookie_t last_cookie; /**< Cookie sent in last REGISTER_SUPER. */
time_t start_time; /**< For calculating uptime */
/* Statistics */
size_t tx_p2p;
size_t rx_p2p;
size_t tx_sup;
size_t rx_sup;
};
/** Return the IP address of the current supernode in the ring. */
static const char * supernode_ip( const n2n_edge_t * eee )
{
return (eee->sn_ip_array)[eee->sn_idx];
}
static void supernode2addr(n2n_sock_t * sn, const n2n_sn_name_t addr);
static void send_packet2net(n2n_edge_t * eee,
uint8_t *decrypted_msg, size_t len);
/* ************************************** */
/* parse the configuration file */
static int readConfFile(const char * filename, char * const linebuffer) {
struct stat stats;
FILE * fd;
char * buffer = NULL;
buffer = (char *)malloc(MAX_CONFFILE_LINE_LENGTH);
if (!buffer) {
traceEvent( TRACE_ERROR, "Unable to allocate memory");
return -1;
}
if (stat(filename, &stats)) {
if (errno == ENOENT)
traceEvent(TRACE_ERROR, "parameter file %s not found/unable to access\n", filename);
else
traceEvent(TRACE_ERROR, "cannot stat file %s, errno=%d\n",filename, errno);
free(buffer);
return -1;
}
fd = fopen(filename, "rb");
if (!fd) {
traceEvent(TRACE_ERROR, "Unable to open parameter file '%s' (%d)...\n",filename,errno);
free(buffer);
return -1;
}
while(fgets(buffer, MAX_CONFFILE_LINE_LENGTH,fd)) {
char * p = NULL;
/* strip out comments */
p = strchr(buffer, '#');
if (p) *p ='\0';
/* remove \n */
p = strchr(buffer, '\n');
if (p) *p ='\0';
/* strip out heading spaces */
p = buffer;
while(*p == ' ' && *p != '\0') ++p;
if (p != buffer) strncpy(buffer,p,strlen(p)+1);
/* strip out trailing spaces */
while(strlen(buffer) && buffer[strlen(buffer)-1]==' ')
buffer[strlen(buffer)-1]= '\0';
/* check for nested @file option */
if (strchr(buffer, '@')) {
traceEvent(TRACE_ERROR, "@file in file nesting is not supported\n");
free(buffer);
return -1;
}
if ((strlen(linebuffer)+strlen(buffer)+2)< MAX_CMDLINE_BUFFER_LENGTH) {
strncat(linebuffer, " ", 1);
strncat(linebuffer, buffer, strlen(buffer));
} else {
traceEvent(TRACE_ERROR, "too many argument");
free(buffer);
return -1;
}
}
free(buffer);
fclose(fd);
return 0;
}
/* Create the argv vector */
static char ** buildargv(int * effectiveargc, char * const linebuffer) {
const int INITIAL_MAXARGC = 16; /* Number of args + NULL in initial argv */
int maxargc;
int argc=0;
char ** argv;
char * buffer, * buff;
*effectiveargc = 0;
buffer = (char *)calloc(1, strlen(linebuffer)+2);
if (!buffer) {
traceEvent( TRACE_ERROR, "Unable to allocate memory");
return NULL;
}
strncpy(buffer, linebuffer,strlen(linebuffer));
maxargc = INITIAL_MAXARGC;
argv = (char **)malloc(maxargc * sizeof(char*));
if (argv == NULL) {
traceEvent( TRACE_ERROR, "Unable to allocate memory");
return NULL;
}
buff = buffer;
while(buff) {
char * p = strchr(buff,' ');
if (p) {
*p='\0';
argv[argc++] = strdup(buff);
while(*++p == ' ' && *p != '\0');
buff=p;
if (argc >= maxargc) {
maxargc *= 2;
argv = (char **)realloc(argv, maxargc * sizeof(char*));
if (argv == NULL) {
traceEvent(TRACE_ERROR, "Unable to re-allocate memory");
free(buffer);
return NULL;
}
}
} else {
argv[argc++] = strdup(buff);
break;
}
}
free(buffer);
*effectiveargc = argc;
return argv;
}
/* ************************************** */
/** Initialise an edge to defaults.
*
* This also initialises the NULL transform operation opstruct.
*/
static int edge_init(n2n_edge_t * eee)
{
#ifdef WIN32
initWin32();
#endif
memset(eee, 0, sizeof(n2n_edge_t));
eee->start_time = time(NULL);
transop_null_init( &(eee->transop[N2N_TRANSOP_NULL_IDX]) );
transop_twofish_init( &(eee->transop[N2N_TRANSOP_TF_IDX] ) );
transop_aes_init( &(eee->transop[N2N_TRANSOP_AESCBC_IDX] ) );
eee->tx_transop_idx = N2N_TRANSOP_NULL_IDX; /* No guarantee the others have been setup */
eee->daemon = 1; /* By default run in daemon mode. */
eee->re_resolve_supernode_ip = 0;
/* keyschedule set to NULLs by memset */
/* community_name set to NULLs by memset */
eee->null_transop = 0;
eee->udp_sock = -1;
eee->udp_mgmt_sock = -1;
eee->dyn_ip_mode = 0;
eee->allow_routing = 0;
eee->drop_multicast = 1;
eee->known_peers = NULL;
eee->pending_peers = NULL;
eee->last_register_req = 0;
eee->register_lifetime = REGISTER_SUPER_INTERVAL_DFL;
eee->last_p2p = 0;
eee->last_sup = 0;
eee->sup_attempts = N2N_EDGE_SUP_ATTEMPTS;
if(lzo_init() != LZO_E_OK)
{
traceEvent(TRACE_ERROR, "LZO compression error");
return(-1);
}
return(0);
}
/* Called in main() after options are parsed. */
static int edge_init_twofish( n2n_edge_t * eee, uint8_t *encrypt_pwd, uint32_t encrypt_pwd_len )
{
return transop_twofish_setup( &(eee->transop[N2N_TRANSOP_TF_IDX]), 0, encrypt_pwd, encrypt_pwd_len );
}
/** Find the transop op-struct for the transform enumeration required.
*
* @return - index into the transop array, or -1 on failure.
*/
static int transop_enum_to_index( n2n_transform_t id )
{
switch (id)
{
case N2N_TRANSFORM_ID_TWOFISH:
return N2N_TRANSOP_TF_IDX;
break;
case N2N_TRANSFORM_ID_NULL:
return N2N_TRANSOP_NULL_IDX;
break;
case N2N_TRANSFORM_ID_AESCBC:
return N2N_TRANSOP_AESCBC_IDX;
break;
default:
return -1;
}
}
/** Called periodically to roll keys and do any periodic maintenance in the
* tranform operations state machines. */
static int n2n_tick_transop( n2n_edge_t * eee, time_t now )
{
n2n_tostat_t tst;
size_t trop = eee->tx_transop_idx;
/* Tests are done in order that most preferred transform is last and causes
* tx_transop_idx to be left at most preferred valid transform. */
tst = (eee->transop[N2N_TRANSOP_NULL_IDX].tick)( &(eee->transop[N2N_TRANSOP_NULL_IDX]), now );
tst = (eee->transop[N2N_TRANSOP_AESCBC_IDX].tick)( &(eee->transop[N2N_TRANSOP_AESCBC_IDX]), now );
if ( tst.can_tx )
{
traceEvent( TRACE_DEBUG, "can_tx AESCBC (idx=%u)", (unsigned int)N2N_TRANSOP_AESCBC_IDX );
trop = N2N_TRANSOP_AESCBC_IDX;
}
tst = (eee->transop[N2N_TRANSOP_TF_IDX].tick)( &(eee->transop[N2N_TRANSOP_TF_IDX]), now );
if ( tst.can_tx )
{
traceEvent( TRACE_DEBUG, "can_tx TF (idx=%u)", (unsigned int)N2N_TRANSOP_TF_IDX );
trop = N2N_TRANSOP_TF_IDX;
}
if ( trop != eee->tx_transop_idx )
{
eee->tx_transop_idx = trop;
traceEvent( TRACE_NORMAL, "Chose new tx_transop_idx=%u", (unsigned int)(eee->tx_transop_idx) );
}
return 0;
}
/** Read in a key-schedule file, parse the lines and pass each line to the
* appropriate trans_op for parsing of key-data and adding key-schedule
* entries. The lookup table of time->trans_op is constructed such that
* encoding can be passed to the correct trans_op. The trans_op internal table
* will then determine the best SA for that trans_op from the key schedule to
* use for encoding. */
static int edge_init_keyschedule( n2n_edge_t * eee )
{
#define N2N_NUM_CIPHERSPECS 32
int retval = -1;
ssize_t numSpecs=0;
n2n_cipherspec_t specs[N2N_NUM_CIPHERSPECS];
size_t i;
time_t now = time(NULL);
numSpecs = n2n_read_keyfile( specs, N2N_NUM_CIPHERSPECS, eee->keyschedule );
if ( numSpecs > 0 )
{
traceEvent( TRACE_NORMAL, "keyfile = %s read -> %d specs.\n", optarg, (signed int)numSpecs);
for ( i=0; i < (size_t)numSpecs; ++i )
{
int idx;
idx = transop_enum_to_index( specs[i].t );
switch (idx)
{
case N2N_TRANSOP_TF_IDX:
case N2N_TRANSOP_AESCBC_IDX:
{
retval = (eee->transop[idx].addspec)( &(eee->transop[idx]),
&(specs[i]) );
break;
}
default:
retval = -1;
}
if (0 != retval)
{
traceEvent( TRACE_ERROR, "keyschedule failed to add spec[%u] to transop[%d].\n",
(unsigned int)i, idx);
return retval;
}
}
n2n_tick_transop( eee, now );
}
else
{
traceEvent( TRACE_ERROR, "Failed to process '%s'", eee->keyschedule );
}
return retval;
}
/** Deinitialise the edge and deallocate any owned memory. */
static void edge_deinit(n2n_edge_t * eee)
{
if ( eee->udp_sock >=0 )
{
closesocket( eee->udp_sock );
}
if ( eee->udp_mgmt_sock >= 0 )
{
closesocket(eee->udp_mgmt_sock);
}
clear_peer_list( &(eee->pending_peers) );
clear_peer_list( &(eee->known_peers) );
(eee->transop[N2N_TRANSOP_TF_IDX].deinit)(&eee->transop[N2N_TRANSOP_TF_IDX]);
(eee->transop[N2N_TRANSOP_NULL_IDX].deinit)(&eee->transop[N2N_TRANSOP_NULL_IDX]);
}
static void readFromIPSocket( n2n_edge_t * eee );
static void readFromMgmtSocket( n2n_edge_t * eee, int * keep_running );
static void help() {
print_n2n_version();
printf("edge "
#if defined(N2N_CAN_NAME_IFACE)
"-d <tun device> "
#endif /* #if defined(N2N_CAN_NAME_IFACE) */
"-a [static:|dhcp:]<tun IP address> "
"-c <community> "
"[-k <encrypt key> | -K <key file>] "
"[-s <netmask>] "
#if defined(N2N_HAVE_SETUID)
"[-u <uid> -g <gid>]"
#endif /* #ifndef N2N_HAVE_SETUID */
#if defined(N2N_HAVE_DAEMON)
"[-f]"
#endif /* #if defined(N2N_HAVE_DAEMON) */
"[-m <MAC address>]"
"\n"
"-l <supernode host:port> "
"[-p <local port>] [-M <mtu>] "
"[-r] [-E] [-v] [-t <mgmt port>] [-b] [-h]\n\n");
#ifdef __linux__
printf("-d <tun device> | tun device name\n");
#endif
printf("-a <mode:address> | Set interface address. For DHCP use '-r -a dhcp:0.0.0.0'\n");
printf("-c <community> | n2n community name the edge belongs to.\n");
printf("-k <encrypt key> | Encryption key (ASCII) - also N2N_KEY=<encrypt key>. Not with -K.\n");
printf("-K <key file> | Specify a key schedule file to load. Not with -k.\n");
printf("-s <netmask> | Edge interface netmask in dotted decimal notation (255.255.255.0).\n");
printf("-l <supernode host:port> | Supernode IP:port\n");
printf("-b | Periodically resolve supernode IP\n");
printf(" : (when supernodes are running on dynamic IPs)\n");
printf("-p <local port> | Fixed local UDP port.\n");
#ifndef WIN32
printf("-u <UID> | User ID (numeric) to use when privileges are dropped.\n");
printf("-g <GID> | Group ID (numeric) to use when privileges are dropped.\n");
#endif /* ifndef WIN32 */
#ifdef N2N_HAVE_DAEMON
printf("-f | Do not fork and run as a daemon; rather run in foreground.\n");
#endif /* #ifdef N2N_HAVE_DAEMON */
printf("-m <MAC address> | Fix MAC address for the TAP interface (otherwise it may be random)\n"
" : eg. -m 01:02:03:04:05:06\n");
printf("-M <mtu> | Specify n2n MTU of edge interface (default %d).\n", DEFAULT_MTU);
printf("-r | Enable packet forwarding through n2n community.\n");
printf("-E | Accept multicast MAC addresses (default=drop).\n");
printf("-v | Make more verbose. Repeat as required.\n");
printf("-t | Management UDP Port (for multiple edges on a machine).\n");
printf("\nEnvironment variables:\n");
printf(" N2N_KEY | Encryption key (ASCII). Not with -K or -k.\n" );
exit(0);
}
/** Send a datagram to a socket defined by a n2n_sock_t */
static ssize_t sendto_sock( int fd, const void * buf, size_t len, const n2n_sock_t * dest )
{
struct sockaddr_in peer_addr;
ssize_t sent;
fill_sockaddr( (struct sockaddr *) &peer_addr,
sizeof(peer_addr),
dest );
sent = sendto( fd, buf, len, 0/*flags*/,
(struct sockaddr *)&peer_addr, sizeof(struct sockaddr_in) );
if ( sent < 0 )
{
char * c = strerror(errno);
traceEvent( TRACE_ERROR, "sendto failed (%d) %s", errno, c );
}
else
{
traceEvent( TRACE_DEBUG, "sendto sent=%d to ", (signed int)sent );
}
return sent;
}
/** Send a REGISTER packet to another edge. */
static void send_register( n2n_edge_t * eee,
const n2n_sock_t * remote_peer)
{
uint8_t pktbuf[N2N_PKT_BUF_SIZE];
size_t idx;
ssize_t sent;
n2n_common_t cmn;
n2n_REGISTER_t reg;
n2n_sock_str_t sockbuf;
memset(&cmn, 0, sizeof(cmn) );
memset(&reg, 0, sizeof(reg) );
cmn.ttl=N2N_DEFAULT_TTL;
cmn.pc = n2n_register;
cmn.flags = 0;
memcpy( cmn.community, eee->community_name, N2N_COMMUNITY_SIZE );
idx=0;
encode_uint32( reg.cookie, &idx, 123456789 );
idx=0;
encode_mac( reg.srcMac, &idx, eee->device.mac_addr );
idx=0;
encode_REGISTER( pktbuf, &idx, &cmn, &reg );
traceEvent( TRACE_INFO, "send REGISTER %s",
sock_to_cstr( sockbuf, remote_peer ) );
sent = sendto_sock( eee->udp_sock, pktbuf, idx, remote_peer );
}
/** Send a REGISTER_SUPER packet to the current supernode. */
static void send_register_super( n2n_edge_t * eee,
const n2n_sock_t * supernode)
{
uint8_t pktbuf[N2N_PKT_BUF_SIZE];
size_t idx;
ssize_t sent;
n2n_common_t cmn;
n2n_REGISTER_SUPER_t reg;
n2n_sock_str_t sockbuf;
memset(&cmn, 0, sizeof(cmn) );
memset(&reg, 0, sizeof(reg) );
cmn.ttl=N2N_DEFAULT_TTL;
cmn.pc = n2n_register_super;
cmn.flags = 0;
memcpy( cmn.community, eee->community_name, N2N_COMMUNITY_SIZE );
for( idx=0; idx < N2N_COOKIE_SIZE; ++idx )
{
eee->last_cookie[idx] = rand() % 0xff;
}
memcpy( reg.cookie, eee->last_cookie, N2N_COOKIE_SIZE );
reg.auth.scheme=0; /* No auth yet */
idx=0;
encode_mac( reg.edgeMac, &idx, eee->device.mac_addr );
idx=0;
encode_REGISTER_SUPER( pktbuf, &idx, &cmn, &reg );
traceEvent( TRACE_INFO, "send REGISTER_SUPER to %s",
sock_to_cstr( sockbuf, supernode ) );
sent = sendto_sock( eee->udp_sock, pktbuf, idx, supernode );
}
/** Send a REGISTER_ACK packet to a peer edge. */
static void send_register_ack( n2n_edge_t * eee,
const n2n_sock_t * remote_peer,
const n2n_REGISTER_t * reg )
{
uint8_t pktbuf[N2N_PKT_BUF_SIZE];
size_t idx;
ssize_t sent;
n2n_common_t cmn;
n2n_REGISTER_ACK_t ack;
n2n_sock_str_t sockbuf;
memset(&cmn, 0, sizeof(cmn) );
memset(&ack, 0, sizeof(reg) );
cmn.ttl=N2N_DEFAULT_TTL;
cmn.pc = n2n_register_ack;
cmn.flags = 0;
memcpy( cmn.community, eee->community_name, N2N_COMMUNITY_SIZE );
memset( &ack, 0, sizeof(ack) );
memcpy( ack.cookie, reg->cookie, N2N_COOKIE_SIZE );
memcpy( ack.srcMac, eee->device.mac_addr, N2N_MAC_SIZE );
memcpy( ack.dstMac, reg->srcMac, N2N_MAC_SIZE );
idx=0;
encode_REGISTER_ACK( pktbuf, &idx, &cmn, &ack );
traceEvent( TRACE_INFO, "send REGISTER_ACK %s",
sock_to_cstr( sockbuf, remote_peer ) );
sent = sendto_sock( eee->udp_sock, pktbuf, idx, remote_peer );
}
/** NOT IMPLEMENTED
*
* This would send a DEREGISTER packet to a peer edge or supernode to indicate
* the edge is going away.
*/
static void send_deregister(n2n_edge_t * eee,
n2n_sock_t * remote_peer)
{
/* Marshall and send message */
}
static int is_empty_ip_address( const n2n_sock_t * sock );
static void update_peer_address(n2n_edge_t * eee,
uint8_t from_supernode,
const n2n_mac_t mac,
const n2n_sock_t * peer,
time_t when);
void check_peer( n2n_edge_t * eee,
uint8_t from_supernode,
const n2n_mac_t mac,
const n2n_sock_t * peer );
void try_send_register( n2n_edge_t * eee,
uint8_t from_supernode,
const n2n_mac_t mac,
const n2n_sock_t * peer );
void set_peer_operational( n2n_edge_t * eee,
const n2n_mac_t mac,
const n2n_sock_t * peer );
/** Start the registration process.
*
* If the peer is already in pending_peers, ignore the request.
* If not in pending_peers, add it and send a REGISTER.
*
* If hdr is for a direct peer-to-peer packet, try to register back to sender
* even if the MAC is in pending_peers. This is because an incident direct
* packet indicates that peer-to-peer exchange should work so more aggressive
* registration can be permitted (once per incoming packet) as this should only
* last for a small number of packets..
*
* Called from the main loop when Rx a packet for our device mac.
*/
void try_send_register( n2n_edge_t * eee,
uint8_t from_supernode,
const n2n_mac_t mac,
const n2n_sock_t * peer )
{
/* REVISIT: purge of pending_peers not yet done. */
struct peer_info * scan = find_peer_by_mac( eee->pending_peers, mac );
macstr_t mac_buf;
n2n_sock_str_t sockbuf;
if ( NULL == scan )
{
scan = calloc( 1, sizeof( struct peer_info ) );
memcpy(scan->mac_addr, mac, N2N_MAC_SIZE);
scan->sock = *peer;
scan->last_seen = time(NULL); /* Don't change this it marks the pending peer for removal. */
peer_list_add( &(eee->pending_peers), scan );
traceEvent( TRACE_DEBUG, "=== new pending %s -> %s",
macaddr_str( mac_buf, scan->mac_addr ),
sock_to_cstr( sockbuf, &(scan->sock) ) );
traceEvent( TRACE_INFO, "Pending peers list size=%u",
(unsigned int)peer_list_size( eee->pending_peers ) );
/* trace Sending REGISTER */
send_register(eee, &(scan->sock) );
/* pending_peers now owns scan. */
}
else
{
}
}
/** Update the last_seen time for this peer, or get registered. */
void check_peer( n2n_edge_t * eee,
uint8_t from_supernode,
const n2n_mac_t mac,
const n2n_sock_t * peer )
{
struct peer_info * scan = find_peer_by_mac( eee->known_peers, mac );
if ( NULL == scan )
{
/* Not in known_peers - start the REGISTER process. */
try_send_register( eee, from_supernode, mac, peer );
}
else
{
/* Already in known_peers. */
update_peer_address( eee, from_supernode, mac, peer, time(NULL) );
}
}
/* Move the peer from the pending_peers list to the known_peers lists.
*
* peer must be a pointer to an element of the pending_peers list.
*
* Called by main loop when Rx a REGISTER_ACK.
*/
void set_peer_operational( n2n_edge_t * eee,
const n2n_mac_t mac,
const n2n_sock_t * peer )
{
struct peer_info * prev = NULL;
struct peer_info * scan;
macstr_t mac_buf;
n2n_sock_str_t sockbuf;
traceEvent( TRACE_INFO, "set_peer_operational: %s -> %s",
macaddr_str( mac_buf, mac),
sock_to_cstr( sockbuf, peer ) );
scan=eee->pending_peers;
while ( NULL != scan )
{
if ( 0 == memcmp( scan->mac_addr, mac, N2N_MAC_SIZE ) )
{
break; /* found. */
}
prev = scan;
scan = scan->next;
}
if ( scan )
{
/* Remove scan from pending_peers. */
if ( prev )
{
prev->next = scan->next;
}
else
{
eee->pending_peers = scan->next;
}
/* Add scan to known_peers. */
scan->next = eee->known_peers;
eee->known_peers = scan;
scan->sock = *peer;
traceEvent( TRACE_DEBUG, "=== new peer %s -> %s",
macaddr_str( mac_buf, scan->mac_addr),
sock_to_cstr( sockbuf, &(scan->sock) ) );
traceEvent( TRACE_INFO, "Pending peers list size=%u",
(unsigned int)peer_list_size( eee->pending_peers ) );
traceEvent( TRACE_INFO, "Operational peers list size=%u",
(unsigned int)peer_list_size( eee->known_peers ) );
scan->last_seen = time(NULL);
}
else
{
traceEvent( TRACE_DEBUG, "Failed to find sender in pending_peers." );
}
}
n2n_mac_t broadcast_mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
static int is_empty_ip_address( const n2n_sock_t * sock )
{
const uint8_t * ptr=NULL;
size_t len=0;
size_t i;
if ( AF_INET6 == sock->family )
{
ptr = sock->addr.v6;
len = 16;
}
else
{
ptr = sock->addr.v4;
len = 4;
}
for (i=0; i<len; ++i)
{
if ( 0 != ptr[i] )
{
/* found a non-zero byte in address */
return 0;
}
}
return 1;
}
/** Keep the known_peers list straight.
*
* Ignore broadcast L2 packets, and packets with invalid public_ip.
* If the dst_mac is in known_peers make sure the entry is correct:
* - if the public_ip socket has changed, erase the entry
* - if the same, update its last_seen = when
*/
static void update_peer_address(n2n_edge_t * eee,
uint8_t from_supernode,
const n2n_mac_t mac,
const n2n_sock_t * peer,
time_t when)
{
struct peer_info *scan = eee->known_peers;
struct peer_info *prev = NULL; /* use to remove bad registrations. */
n2n_sock_str_t sockbuf1;
n2n_sock_str_t sockbuf2; /* don't clobber sockbuf1 if writing two addresses to trace */
macstr_t mac_buf;
if ( is_empty_ip_address( peer ) )
{
/* Not to be registered. */
return;
}
if ( 0 == memcmp( mac, broadcast_mac, N2N_MAC_SIZE ) )
{
/* Not to be registered. */
return;
}
while(scan != NULL)
{
if(memcmp(mac, scan->mac_addr, N2N_MAC_SIZE) == 0)
{
break;
}
prev = scan;
scan = scan->next;
}
if ( NULL == scan )
{
/* Not in known_peers. */
return;
}
if ( 0 != sock_equal( &(scan->sock), peer))
{
if ( 0 == from_supernode )
{
traceEvent( TRACE_NORMAL, "Peer changed %s: %s -> %s",
macaddr_str( mac_buf, scan->mac_addr ),
sock_to_cstr(sockbuf1, &(scan->sock)),
sock_to_cstr(sockbuf2, peer) );
/* The peer has changed public socket. It can no longer be assumed to be reachable. */
/* Remove the peer. */
if ( NULL == prev )
{
/* scan was head of list */
eee->known_peers = scan->next;
}
else
{
prev->next = scan->next;
}
free(scan);
try_send_register( eee, from_supernode, mac, peer );
}
else
{
/* Don't worry about what the supernode reports, it could be seeing a different socket. */
}
}
else
{
/* Found and unchanged. */
scan->last_seen = when;
}
}
#if defined(DUMMY_ID_00001) /* Disabled waiting for config option to enable it */
static char gratuitous_arp[] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* Dest mac */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* Src mac */
0x08, 0x06, /* ARP */
0x00, 0x01, /* Ethernet */
0x08, 0x00, /* IP */
0x06, /* Hw Size */
0x04, /* Protocol Size */
0x00, 0x01, /* ARP Request */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* Src mac */
0x00, 0x00, 0x00, 0x00, /* Src IP */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* Target mac */
0x00, 0x00, 0x00, 0x00 /* Target IP */
};
/** Build a gratuitous ARP packet for a /24 layer 3 (IP) network. */
static int build_gratuitous_arp(char *buffer, uint16_t buffer_len) {
if(buffer_len < sizeof(gratuitous_arp)) return(-1);
memcpy(buffer, gratuitous_arp, sizeof(gratuitous_arp));
memcpy(&buffer[6], device.mac_addr, 6);
memcpy(&buffer[22], device.mac_addr, 6);
memcpy(&buffer[28], &device.ip_addr, 4);
/* REVISIT: BbMaj7 - use a real netmask here. This is valid only by accident
* for /24 IPv4 networks. */
buffer[31] = 0xFF; /* Use a faked broadcast address */
memcpy(&buffer[38], &device.ip_addr, 4);
return(sizeof(gratuitous_arp));
}
/** Called from update_supernode_reg to periodically send gratuitous ARP
* broadcasts. */
static void send_grat_arps(n2n_edge_t * eee,) {
char buffer[48];
size_t len;
traceEvent(TRACE_NORMAL, "Sending gratuitous ARP...");
len = build_gratuitous_arp(buffer, sizeof(buffer));
send_packet2net(eee, buffer, len);
send_packet2net(eee, buffer, len); /* Two is better than one :-) */
}
#endif /* #if defined(DUMMY_ID_00001) */
/** @brief Check to see if we should re-register with the supernode.
*
* This is frequently called by the main loop.
*/
static void update_supernode_reg( n2n_edge_t * eee, time_t nowTime )
{
if ( eee->sn_wait && ( nowTime > (eee->last_register_req + (eee->register_lifetime/10) ) ) )
{
/* fall through */
traceEvent( TRACE_DEBUG, "update_supernode_reg: doing fast retry." );
}
else if ( nowTime < (eee->last_register_req + eee->register_lifetime))
{
return; /* Too early */
}
if ( 0 == eee->sup_attempts )
{
/* Give up on that supernode and try the next one. */
++(eee->sn_idx);
if (eee->sn_idx >= eee->sn_num)
{
/* Got to end of list, go back to the start. Also works for list of one entry. */
eee->sn_idx=0;
}
traceEvent(TRACE_WARNING, "Supernode not responding - moving to %u of %u",
(unsigned int)eee->sn_idx, (unsigned int)eee->sn_num );
eee->sup_attempts = N2N_EDGE_SUP_ATTEMPTS;
}
else
{
--(eee->sup_attempts);
}
if(eee->re_resolve_supernode_ip || (eee->sn_num > 1) )
{
supernode2addr(&(eee->supernode), eee->sn_ip_array[eee->sn_idx] );
}
traceEvent(TRACE_DEBUG, "Registering with supernode (%s) (attempts left %u)",
supernode_ip(eee), (unsigned int)eee->sup_attempts);
send_register_super( eee, &(eee->supernode) );
eee->sn_wait=1;
/* REVISIT: turn-on gratuitous ARP with config option. */
/* send_grat_arps(sock_fd, is_udp_sock); */
eee->last_register_req = nowTime;
}
/* @return 1 if destination is a peer, 0 if destination is supernode */
static int find_peer_destination(n2n_edge_t * eee,
n2n_mac_t mac_address,
n2n_sock_t * destination)
{
const struct peer_info *scan = eee->known_peers;
macstr_t mac_buf;
n2n_sock_str_t sockbuf;
int retval=0;
traceEvent(TRACE_DEBUG, "Searching destination peer for MAC %02X:%02X:%02X:%02X:%02X:%02X",
mac_address[0] & 0xFF, mac_address[1] & 0xFF, mac_address[2] & 0xFF,
mac_address[3] & 0xFF, mac_address[4] & 0xFF, mac_address[5] & 0xFF);
while(scan != NULL) {
traceEvent(TRACE_DEBUG, "Evaluating peer [MAC=%02X:%02X:%02X:%02X:%02X:%02X]",
scan->mac_addr[0] & 0xFF, scan->mac_addr[1] & 0xFF, scan->mac_addr[2] & 0xFF,
scan->mac_addr[3] & 0xFF, scan->mac_addr[4] & 0xFF, scan->mac_addr[5] & 0xFF
);
if((scan->last_seen > 0) &&
(memcmp(mac_address, scan->mac_addr, N2N_MAC_SIZE) == 0))
{
memcpy(destination, &scan->sock, sizeof(n2n_sock_t));
retval=1;
break;
}
scan = scan->next;
}
if ( 0 == retval )
{
memcpy(destination, &(eee->supernode), sizeof(struct sockaddr_in));
}
traceEvent(TRACE_DEBUG, "find_peer_address (%s) -> [%s]",
macaddr_str( mac_buf, mac_address ),
sock_to_cstr( sockbuf, destination ) );
return retval;
}
/* *********************************************** */
static const struct option long_options[] = {
{ "community", required_argument, NULL, 'c' },
{ "supernode-list", required_argument, NULL, 'l' },
{ "tun-device", required_argument, NULL, 'd' },
{ "euid", required_argument, NULL, 'u' },
{ "egid", required_argument, NULL, 'g' },
{ "help" , no_argument, NULL, 'h' },
{ "verbose", no_argument, NULL, 'v' },
{ NULL, 0, NULL, 0 }
};
/* ***************************************************** */
/** Send an ecapsulated ethernet PACKET to a destination edge or broadcast MAC
* address. */
static int send_PACKET( n2n_edge_t * eee,
n2n_mac_t dstMac,
const uint8_t * pktbuf,
size_t pktlen )
{
int dest;
ssize_t s;
n2n_sock_str_t sockbuf;
n2n_sock_t destination;
/* hexdump( pktbuf, pktlen ); */
dest = find_peer_destination(eee, dstMac, &destination);
if ( dest )
{
++(eee->tx_p2p);
}
else
{
++(eee->tx_sup);
}
traceEvent( TRACE_INFO, "send_PACKET to %s", sock_to_cstr( sockbuf, &destination ) );
s = sendto_sock( eee->udp_sock, pktbuf, pktlen, &destination );
return 0;
}
/* Choose the transop for Tx. This should be based on the newest valid
* cipherspec in the key schedule.
*
* Never fall back to NULL tranform unless no key sources were specified. It is
* better to render edge inoperative than to expose user data in the clear. In
* the case where all SAs are expired an arbitrary transform will be chosen for
* Tx. It will fail having no valid SAs but one must be selected.
*/
static size_t edge_choose_tx_transop( const n2n_edge_t * eee )
{
if ( eee->null_transop)
{
return N2N_TRANSOP_NULL_IDX;
}
return eee->tx_transop_idx;
}
/** A layer-2 packet was received at the tunnel and needs to be sent via UDP. */
static void send_packet2net(n2n_edge_t * eee,
uint8_t *tap_pkt, size_t len)
{
ipstr_t ip_buf;
n2n_mac_t destMac;
n2n_common_t cmn;
n2n_PACKET_t pkt;
uint8_t pktbuf[N2N_PKT_BUF_SIZE];
size_t idx=0;
size_t tx_transop_idx=0;
ether_hdr_t eh;
/* tap_pkt is not aligned so we have to copy to aligned memory */
memcpy( &eh, tap_pkt, sizeof(ether_hdr_t) );
/* Discard IP packets that are not originated by this hosts */
if(!(eee->allow_routing)) {
if(ntohs(eh.type) == 0x0800) {
/* This is an IP packet from the local source address - not forwarded. */
#define ETH_FRAMESIZE 14
#define IP4_SRCOFFSET 12
uint32_t *dst = (uint32_t*)&tap_pkt[ETH_FRAMESIZE + IP4_SRCOFFSET];
/* Note: all elements of the_ip are in network order */
if( *dst != eee->device.ip_addr) {
/* This is a packet that needs to be routed */
traceEvent(TRACE_INFO, "Discarding routed packet [%s]",
intoa(ntohl(*dst), ip_buf, sizeof(ip_buf)));
return;
} else {
/* This packet is originated by us */
/* traceEvent(TRACE_INFO, "Sending non-routed packet"); */
}
}
}
/* Optionally compress then apply transforms, eg encryption. */
/* Once processed, send to destination in PACKET */
memcpy( destMac, tap_pkt, N2N_MAC_SIZE ); /* dest MAC is first in ethernet header */
memset( &cmn, 0, sizeof(cmn) );
cmn.ttl = N2N_DEFAULT_TTL;
cmn.pc = n2n_packet;
cmn.flags=0; /* no options, not from supernode, no socket */
memcpy( cmn.community, eee->community_name, N2N_COMMUNITY_SIZE );
memset( &pkt, 0, sizeof(pkt) );
memcpy( pkt.srcMac, eee->device.mac_addr, N2N_MAC_SIZE);
memcpy( pkt.dstMac, destMac, N2N_MAC_SIZE);
tx_transop_idx = edge_choose_tx_transop( eee );
pkt.sock.family=0; /* do not encode sock */
pkt.transform = eee->transop[tx_transop_idx].transform_id;
idx=0;
encode_PACKET( pktbuf, &idx, &cmn, &pkt );
traceEvent( TRACE_DEBUG, "encoded PACKET header of size=%u transform %u (idx=%u)",
(unsigned int)idx, (unsigned int)pkt.transform, (unsigned int)tx_transop_idx );
idx += eee->transop[tx_transop_idx].fwd( &(eee->transop[tx_transop_idx]),
pktbuf+idx, N2N_PKT_BUF_SIZE-idx,
tap_pkt, len );
++(eee->transop[tx_transop_idx].tx_cnt); /* stats */
send_PACKET( eee, destMac, pktbuf, idx ); /* to peer or supernode */
}
/** Destination MAC 33:33:0:00:00:00 - 33:33:FF:FF:FF:FF is reserved for IPv6
* neighbour discovery.
*/
static int is_ip6_discovery( const void * buf, size_t bufsize )
{
int retval = 0;
if ( bufsize >= sizeof(ether_hdr_t) )
{
/* copy to aligned memory */
ether_hdr_t eh;
memcpy( &eh, buf, sizeof(ether_hdr_t) );
if ( (0x33 == eh.dhost[0]) &&
(0x33 == eh.dhost[1]) )
{
retval = 1; /* This is an IPv6 multicast packet [RFC2464]. */
}
}
return retval;
}
/** Destination 01:00:5E:00:00:00 - 01:00:5E:7F:FF:FF is multicast ethernet.
*/
static int is_ethMulticast( const void * buf, size_t bufsize )
{
int retval = 0;
/* Match 01:00:5E:00:00:00 - 01:00:5E:7F:FF:FF */
if ( bufsize >= sizeof(ether_hdr_t) )
{
/* copy to aligned memory */
ether_hdr_t eh;
memcpy( &eh, buf, sizeof(ether_hdr_t) );
if ( (0x01 == eh.dhost[0]) &&
(0x00 == eh.dhost[1]) &&
(0x5E == eh.dhost[2]) &&
(0 == (0x80 & eh.dhost[3])) )
{
retval = 1; /* This is an ethernet multicast packet [RFC1112]. */
}
}
return retval;
}
/** Read a single packet from the TAP interface, process it and write out the
* corresponding packet to the cooked socket.
*/
static void readFromTAPSocket( n2n_edge_t * eee )
{
/* tun -> remote */
uint8_t eth_pkt[N2N_PKT_BUF_SIZE];
macstr_t mac_buf;
ssize_t len;
len = tuntap_read( &(eee->device), eth_pkt, N2N_PKT_BUF_SIZE );
if( (len <= 0) || (len > N2N_PKT_BUF_SIZE) )
{
traceEvent(TRACE_WARNING, "read()=%d [%d/%s]",
(signed int)len, errno, strerror(errno));
}
else
{
const uint8_t * mac = eth_pkt;
traceEvent(TRACE_INFO, "### Rx TAP packet (%4d) for %s",
(signed int)len, macaddr_str(mac_buf, mac) );
if ( eee->drop_multicast &&
( is_ip6_discovery( eth_pkt, len ) ||
is_ethMulticast( eth_pkt, len)
)
)
{
traceEvent(TRACE_DEBUG, "Dropping multicast");
}
else
{
send_packet2net(eee, eth_pkt, len);
}
}
}
/** A PACKET has arrived containing an encapsulated ethernet datagram - usually
* encrypted. */
static int handle_PACKET( n2n_edge_t * eee,
const n2n_common_t * cmn,
const n2n_PACKET_t * pkt,
const n2n_sock_t * orig_sender,
uint8_t * payload,
size_t psize )
{
ssize_t data_sent_len;
uint8_t from_supernode;
uint8_t * eth_payload=NULL;
int retval = -1;
time_t now;
now = time(NULL);
traceEvent( TRACE_DEBUG, "handle_PACKET size %u transform %u",
(unsigned int)psize, (unsigned int)pkt->transform );
/* hexdump( payload, psize ); */
from_supernode= cmn->flags & N2N_FLAGS_FROM_SUPERNODE;
if ( from_supernode )
{
++(eee->rx_sup);
eee->last_sup=now;
}
else
{
++(eee->rx_p2p);
eee->last_p2p=now;
}
/* Update the sender in peer table entry */
check_peer( eee, from_supernode, pkt->srcMac, orig_sender );
/* Handle transform. */
{
uint8_t decodebuf[N2N_PKT_BUF_SIZE];
size_t eth_size;
size_t rx_transop_idx=0;
rx_transop_idx = transop_enum_to_index(pkt->transform);
if ( rx_transop_idx >=0 )
{
eth_payload = decodebuf;
eth_size = eee->transop[rx_transop_idx].rev( &(eee->transop[rx_transop_idx]),
eth_payload, N2N_PKT_BUF_SIZE,
payload, psize );
++(eee->transop[rx_transop_idx].rx_cnt); /* stats */
/* Write ethernet packet to tap device. */
traceEvent( TRACE_INFO, "sending to TAP %u", (unsigned int)eth_size );
data_sent_len = tuntap_write(&(eee->device), eth_payload, eth_size);
if (data_sent_len == eth_size)
{
retval = 0;
}
}
else
{
traceEvent( TRACE_ERROR, "handle_PACKET dropped unknown transform enum %u",
(unsigned int)pkt->transform );
}
}
return retval;
}
/** Read a datagram from the management UDP socket and take appropriate
* action. */
static void readFromMgmtSocket( n2n_edge_t * eee, int * keep_running )
{
uint8_t udp_buf[N2N_PKT_BUF_SIZE]; /* Compete UDP packet */
ssize_t recvlen;
ssize_t sendlen;
struct sockaddr_in sender_sock;
socklen_t i;
size_t msg_len;
time_t now;
now = time(NULL);
i = sizeof(sender_sock);
recvlen=recvfrom(eee->udp_mgmt_sock, udp_buf, N2N_PKT_BUF_SIZE, 0/*flags*/,
(struct sockaddr *)&sender_sock, (socklen_t*)&i);
if ( recvlen < 0 )
{
traceEvent(TRACE_ERROR, "mgmt recvfrom failed with %s", strerror(errno) );
return; /* failed to receive data from UDP */
}
if ( recvlen >= 4 )
{
if ( 0 == memcmp( udp_buf, "stop", 4 ) )
{
traceEvent( TRACE_ERROR, "stop command received." );
*keep_running = 0;
return;
}
if ( 0 == memcmp( udp_buf, "help", 4 ) )
{
msg_len=0;
++traceLevel;
msg_len += snprintf( (char *)(udp_buf+msg_len), (N2N_PKT_BUF_SIZE-msg_len),
"Help for edge management console:\n"
" stop Gracefully exit edge\n"
" help This help message\n"
" +verb Increase verbosity of logging\n"
" -verb Decrease verbosity of logging\n"
" reload Re-read the keyschedule\n"
" <enter> Display statistics\n\n");
sendto( eee->udp_mgmt_sock, udp_buf, msg_len, 0/*flags*/,
(struct sockaddr *)&sender_sock, sizeof(struct sockaddr_in) );
return;
}
}
if ( recvlen >= 5 )
{
if ( 0 == memcmp( udp_buf, "+verb", 5 ) )
{
msg_len=0;
++traceLevel;
traceEvent( TRACE_ERROR, "+verb traceLevel=%u", (unsigned int)traceLevel );
msg_len += snprintf( (char *)(udp_buf+msg_len), (N2N_PKT_BUF_SIZE-msg_len),
"> +OK traceLevel=%u\n", (unsigned int)traceLevel );
sendto( eee->udp_mgmt_sock, udp_buf, msg_len, 0/*flags*/,
(struct sockaddr *)&sender_sock, sizeof(struct sockaddr_in) );
return;
}
if ( 0 == memcmp( udp_buf, "-verb", 5 ) )
{
msg_len=0;
if ( traceLevel > 0 )
{
--traceLevel;
msg_len += snprintf( (char *)(udp_buf+msg_len), (N2N_PKT_BUF_SIZE-msg_len),
"> -OK traceLevel=%u\n", traceLevel );
}
else
{
msg_len += snprintf( (char *)(udp_buf+msg_len), (N2N_PKT_BUF_SIZE-msg_len),
"> -NOK traceLevel=%u\n", traceLevel );
}
traceEvent( TRACE_ERROR, "-verb traceLevel=%u", (unsigned int)traceLevel );
sendto( eee->udp_mgmt_sock, udp_buf, msg_len, 0/*flags*/,
(struct sockaddr *)&sender_sock, sizeof(struct sockaddr_in) );
return;
}
}
if ( recvlen >= 6 )
{
if ( 0 == memcmp( udp_buf, "reload", 6 ) )
{
if ( strlen( eee->keyschedule ) > 0 )
{
if ( edge_init_keyschedule(eee) == 0 )
{
msg_len=0;
msg_len += snprintf( (char *)(udp_buf+msg_len), (N2N_PKT_BUF_SIZE-msg_len),
"> OK\n" );
sendto( eee->udp_mgmt_sock, udp_buf, msg_len, 0/*flags*/,
(struct sockaddr *)&sender_sock, sizeof(struct sockaddr_in) );
}
return;
}
}
}
traceEvent(TRACE_DEBUG, "mgmt status rq" );
msg_len=0;
msg_len += snprintf( (char *)(udp_buf+msg_len), (N2N_PKT_BUF_SIZE-msg_len),
"Statistics for edge\n" );
msg_len += snprintf( (char *)(udp_buf+msg_len), (N2N_PKT_BUF_SIZE-msg_len),
"uptime %lu\n",
time(NULL) - eee->start_time );
msg_len += snprintf( (char *)(udp_buf+msg_len), (N2N_PKT_BUF_SIZE-msg_len),
"paths super:%u,%u p2p:%u,%u\n",
(unsigned int)eee->tx_sup,
(unsigned int)eee->rx_sup,
(unsigned int)eee->tx_p2p,
(unsigned int)eee->rx_p2p );
msg_len += snprintf( (char *)(udp_buf+msg_len), (N2N_PKT_BUF_SIZE-msg_len),
"trans:null |%6u|%6u|\n"
"trans:tf |%6u|%6u|\n"
"trans:aes |%6u|%6u|\n",
(unsigned int)eee->transop[N2N_TRANSOP_NULL_IDX].tx_cnt,
(unsigned int)eee->transop[N2N_TRANSOP_NULL_IDX].rx_cnt,
(unsigned int)eee->transop[N2N_TRANSOP_TF_IDX].tx_cnt,
(unsigned int)eee->transop[N2N_TRANSOP_TF_IDX].rx_cnt,
(unsigned int)eee->transop[N2N_TRANSOP_AESCBC_IDX].tx_cnt,
(unsigned int)eee->transop[N2N_TRANSOP_AESCBC_IDX].rx_cnt );
msg_len += snprintf( (char *)(udp_buf+msg_len), (N2N_PKT_BUF_SIZE-msg_len),
"peers pend:%u full:%u\n",
(unsigned int)peer_list_size( eee->pending_peers ),
(unsigned int)peer_list_size( eee->known_peers ) );
msg_len += snprintf( (char *)(udp_buf+msg_len), (N2N_PKT_BUF_SIZE-msg_len),
"last super:%lu(%ld sec ago) p2p:%lu(%ld sec ago)\n",
eee->last_sup, (now-eee->last_sup), eee->last_p2p, (now-eee->last_p2p) );
traceEvent(TRACE_DEBUG, "mgmt status sending: %s", udp_buf );
sendlen = sendto( eee->udp_mgmt_sock, udp_buf, msg_len, 0/*flags*/,
(struct sockaddr *)&sender_sock, sizeof(struct sockaddr_in) );
}
/** Read a datagram from the main UDP socket to the internet. */
static void readFromIPSocket( n2n_edge_t * eee )
{
n2n_common_t cmn; /* common fields in the packet header */
n2n_sock_str_t sockbuf1;
n2n_sock_str_t sockbuf2; /* don't clobber sockbuf1 if writing two addresses to trace */
macstr_t mac_buf1;
macstr_t mac_buf2;
uint8_t udp_buf[N2N_PKT_BUF_SIZE]; /* Compete UDP packet */
ssize_t recvlen;
size_t rem;
size_t idx;
size_t msg_type;
uint8_t from_supernode;
struct sockaddr_in sender_sock;
n2n_sock_t sender;
n2n_sock_t * orig_sender=NULL;
time_t now=0;
size_t i;
i = sizeof(sender_sock);
recvlen=recvfrom(eee->udp_sock, udp_buf, N2N_PKT_BUF_SIZE, 0/*flags*/,
(struct sockaddr *)&sender_sock, (socklen_t*)&i);
if ( recvlen < 0 )
{
traceEvent(TRACE_ERROR, "recvfrom failed with %s", strerror(errno) );
return; /* failed to receive data from UDP */
}
/* REVISIT: when UDP/IPv6 is supported we will need a flag to indicate which
* IP transport version the packet arrived on. May need to UDP sockets. */
sender.family = AF_INET; /* udp_sock was opened PF_INET v4 */
sender.port = ntohs(sender_sock.sin_port);
memcpy( &(sender.addr.v4), &(sender_sock.sin_addr.s_addr), IPV4_SIZE );
/* The packet may not have an orig_sender socket spec. So default to last
* hop as sender. */
orig_sender=&sender;
traceEvent(TRACE_INFO, "### Rx N2N UDP (%d) from %s",
(signed int)recvlen, sock_to_cstr(sockbuf1, &sender) );
/* hexdump( udp_buf, recvlen ); */
rem = recvlen; /* Counts down bytes of packet to protect against buffer overruns. */
idx = 0; /* marches through packet header as parts are decoded. */
if ( decode_common(&cmn, udp_buf, &rem, &idx) < 0 )
{
traceEvent( TRACE_ERROR, "Failed to decode common section in N2N_UDP" );
return; /* failed to decode packet */
}
now = time(NULL);
msg_type = cmn.pc; /* packet code */
from_supernode= cmn.flags & N2N_FLAGS_FROM_SUPERNODE;
if( 0 == memcmp(cmn.community, eee->community_name, N2N_COMMUNITY_SIZE) )
{
if( msg_type == MSG_TYPE_PACKET)
{
/* process PACKET - most frequent so first in list. */
n2n_PACKET_t pkt;
decode_PACKET( &pkt, &cmn, udp_buf, &rem, &idx );
if ( pkt.sock.family )
{
orig_sender = &(pkt.sock);
}
traceEvent(TRACE_INFO, "Rx PACKET from %s (%s)",
sock_to_cstr(sockbuf1, &sender),
sock_to_cstr(sockbuf2, orig_sender) );
handle_PACKET( eee, &cmn, &pkt, orig_sender, udp_buf+idx, recvlen-idx );
}
else if(msg_type == MSG_TYPE_REGISTER)
{
/* Another edge is registering with us */
n2n_REGISTER_t reg;
decode_REGISTER( &reg, &cmn, udp_buf, &rem, &idx );
if ( reg.sock.family )
{
orig_sender = &(reg.sock);
}
traceEvent(TRACE_INFO, "Rx REGISTER src=%s dst=%s from peer %s (%s)",
macaddr_str( mac_buf1, reg.srcMac ),
macaddr_str( mac_buf2, reg.dstMac ),
sock_to_cstr(sockbuf1, &sender),
sock_to_cstr(sockbuf2, orig_sender) );
if ( 0 == memcmp(reg.dstMac, (eee->device.mac_addr), 6) )
{
check_peer( eee, from_supernode, reg.srcMac, orig_sender );
}
send_register_ack(eee, orig_sender, &reg);
}
else if(msg_type == MSG_TYPE_REGISTER_ACK)
{
/* Peer edge is acknowledging our register request */
n2n_REGISTER_ACK_t ra;
decode_REGISTER_ACK( &ra, &cmn, udp_buf, &rem, &idx );
if ( ra.sock.family )
{
orig_sender = &(ra.sock);
}
traceEvent(TRACE_INFO, "Rx REGISTER_ACK src=%s dst=%s from peer %s (%s)",
macaddr_str( mac_buf1, ra.srcMac ),
macaddr_str( mac_buf2, ra.dstMac ),
sock_to_cstr(sockbuf1, &sender),
sock_to_cstr(sockbuf2, orig_sender) );
/* Move from pending_peers to known_peers; ignore if not in pending. */
set_peer_operational( eee, ra.srcMac, &sender );
}
else if(msg_type == MSG_TYPE_REGISTER_SUPER_ACK)
{
n2n_REGISTER_SUPER_ACK_t ra;
if ( eee->sn_wait )
{
decode_REGISTER_SUPER_ACK( &ra, &cmn, udp_buf, &rem, &idx );
if ( ra.sock.family )
{
orig_sender = &(ra.sock);
}
traceEvent(TRACE_NORMAL, "Rx REGISTER_SUPER_ACK myMAC=%s [%s] (external %s). Attempts %u",
macaddr_str( mac_buf1, ra.edgeMac ),
sock_to_cstr(sockbuf1, &sender),
sock_to_cstr(sockbuf2, orig_sender),
(unsigned int)eee->sup_attempts );
if ( 0 == memcmp( ra.cookie, eee->last_cookie, N2N_COOKIE_SIZE ) )
{
if ( ra.num_sn > 0 )
{
traceEvent(TRACE_NORMAL, "Rx REGISTER_SUPER_ACK backup supernode at %s",
sock_to_cstr(sockbuf1, &(ra.sn_bak) ) );
}
eee->last_sup = now;
eee->sn_wait=0;
eee->sup_attempts = N2N_EDGE_SUP_ATTEMPTS; /* refresh because we got a response */
/* REVISIT: store sn_back */
eee->register_lifetime = ra.lifetime;
eee->register_lifetime = MAX( eee->register_lifetime, REGISTER_SUPER_INTERVAL_MIN );
eee->register_lifetime = MIN( eee->register_lifetime, REGISTER_SUPER_INTERVAL_MAX );
}
else
{
traceEvent( TRACE_WARNING, "Rx REGISTER_SUPER_ACK with wrong or old cookie." );
}
}
else
{
traceEvent( TRACE_WARNING, "Rx REGISTER_SUPER_ACK with no outstanding REGISTER_SUPER." );
}
}
else
{
/* Not a known message type */
traceEvent(TRACE_WARNING, "Unable to handle packet type %d: ignored", (signed int)msg_type);
return;
}
} /* if (community match) */
else
{
traceEvent(TRACE_WARNING, "Received packet with invalid community");
}
}
/* ***************************************************** */
#ifdef WIN32
static DWORD tunReadThread(LPVOID lpArg )
{
n2n_edge_t *eee = (n2n_edge_t*)lpArg;
while(1)
{
readFromTAPSocket(eee);
}
return((DWORD)NULL);
}
/** Start a second thread in Windows because TUNTAP interfaces do not expose
* file descriptors. */
static void startTunReadThread(n2n_edge_t *eee)
{
HANDLE hThread;
DWORD dwThreadId;
hThread = CreateThread(NULL, /* security attributes */
0, /* use default stack size */
(LPTHREAD_START_ROUTINE)tunReadThread, /* thread function */
(void*)eee, /* argument to thread function */
0, /* thread creation flags */
&dwThreadId); /* thread id out */
}
#endif
/* ***************************************************** */
/** Resolve the supernode IP address.
*
* REVISIT: This is a really bad idea. The edge will block completely while the
* hostname resolution is performed. This could take 15 seconds.
*/
static void supernode2addr(n2n_sock_t * sn, const n2n_sn_name_t addrIn)
{
n2n_sn_name_t addr;
const char *supernode_host;
memcpy( addr, addrIn, N2N_EDGE_SN_HOST_SIZE );
supernode_host = strtok(addr, ":");
if(supernode_host)
{
in_addr_t sn_addr;
char *supernode_port = strtok(NULL, ":");
const struct addrinfo aihints = {0, PF_INET, 0, 0, 0, NULL, NULL, NULL};
struct addrinfo * ainfo = NULL;
int nameerr;
if ( supernode_port )
sn->port = atoi(supernode_port);
else
traceEvent(TRACE_WARNING, "Bad supernode parameter (-l <host:port>) %s %s:%s",
addr, supernode_host, supernode_port);
nameerr = getaddrinfo( supernode_host, NULL, &aihints, &ainfo );
if( 0 == nameerr )
{
struct sockaddr_in * saddr;
/* ainfo s the head of a linked list if non-NULL. */
if ( ainfo && (PF_INET == ainfo->ai_family) )
{
/* It is definitely and IPv4 address -> sockaddr_in */
saddr = (struct sockaddr_in *)ainfo->ai_addr;
memcpy( sn->addr.v4, &(saddr->sin_addr.s_addr), IPV4_SIZE );
sn->family=AF_INET;
}
else
{
/* Should only return IPv4 addresses due to aihints. */
traceEvent(TRACE_WARNING, "Failed to resolve supernode IPv4 address for %s", supernode_host);
}
freeaddrinfo(ainfo); /* free everything allocated by getaddrinfo(). */
ainfo = NULL;
} else {
traceEvent(TRACE_WARNING, "Failed to resolve supernode host %s, assuming numeric", supernode_host);
sn_addr = inet_addr(supernode_host); /* uint32_t */
memcpy( sn->addr.v4, &(sn_addr), IPV4_SIZE );
sn->family=AF_INET;
}
} else
traceEvent(TRACE_WARNING, "Wrong supernode parameter (-l <host:port>)");
}
/* ***************************************************** */
/** Find the address and IP mode for the tuntap device.
*
* s is one of these forms:
*
* <host> := <hostname> | A.B.C.D
*
* <host> | static:<host> | dhcp:<host>
*
* If the mode is present (colon required) then fill ip_mode with that value
* otherwise do not change ip_mode. Fill ip_mode with everything after the
* colon if it is present; or s if colon is not present.
*
* ip_add and ip_mode are NULL terminated if modified.
*
* return 0 on success and -1 on error
*/
static int scan_address( char * ip_addr, size_t addr_size,
char * ip_mode, size_t mode_size,
const char * s )
{
int retval = -1;
char * p;
if ( ( NULL == s ) || ( NULL == ip_addr) )
{
return -1;
}
memset(ip_addr, 0, addr_size);
p = strpbrk(s, ":");
if ( p )
{
/* colon is present */
if ( ip_mode )
{
size_t end=0;
memset(ip_mode, 0, mode_size);
end = MIN( p-s, (ssize_t)(mode_size-1) ); /* ensure NULL term */
strncpy( ip_mode, s, end );
strncpy( ip_addr, p+1, addr_size-1 ); /* ensure NULL term */
retval = 0;
}
}
else
{
/* colon is not present */
strncpy( ip_addr, s, addr_size );
}
return retval;
}
static int run_loop(n2n_edge_t * eee );
#define N2N_NETMASK_STR_SIZE 16 /* dotted decimal 12 numbers + 3 dots */
#define N2N_MACNAMSIZ 18 /* AA:BB:CC:DD:EE:FF + NULL*/
#define N2N_IF_MODE_SIZE 16 /* static | dhcp */
/** Entry point to program from kernel. */
int main(int argc, char* argv[])
{
int opt;
int local_port = 0 /* any port */;
int mgmt_port = N2N_EDGE_MGMT_PORT; /* 5644 by default */
char tuntap_dev_name[N2N_IFNAMSIZ] = "edge0";
char ip_mode[N2N_IF_MODE_SIZE]="static";
char ip_addr[N2N_NETMASK_STR_SIZE] = "";
char netmask[N2N_NETMASK_STR_SIZE]="255.255.255.0";
int mtu = DEFAULT_MTU;
int got_s = 0;
#ifndef WIN32
uid_t userid=0; /* root is the only guaranteed ID */
gid_t groupid=0; /* root is the only guaranteed ID */
#endif
char device_mac[N2N_MACNAMSIZ]="";
char * encrypt_key=NULL;
int i, effectiveargc=0;
char ** effectiveargv=NULL;
char * linebuffer = NULL;
n2n_edge_t eee; /* single instance for this program */
if (-1 == edge_init(&eee) )
{
traceEvent( TRACE_ERROR, "Failed in edge_init" );
exit(1);
}
if( getenv( "N2N_KEY" ))
{
encrypt_key = strdup( getenv( "N2N_KEY" ));
}
#ifdef WIN32
tuntap_dev_name[0] = '\0';
#endif
memset(&(eee.supernode), 0, sizeof(eee.supernode));
eee.supernode.family = AF_INET;
linebuffer = (char *)malloc(MAX_CMDLINE_BUFFER_LENGTH);
if (!linebuffer)
{
traceEvent( TRACE_ERROR, "Unable to allocate memory");
exit(1);
}
snprintf(linebuffer, MAX_CMDLINE_BUFFER_LENGTH, "%s",argv[0]);
#ifdef WIN32
for(i=0; i < (int)strlen(linebuffer); i++)
if(linebuffer[i] == '\\') linebuffer[i] = '/';
#endif
for(i=1;i<argc;++i)
{
if(argv[i][0] == '@')
{
if (readConfFile(&argv[i][1], linebuffer)<0) exit(1); /* <<<<----- check */
}
else if ((strlen(linebuffer)+strlen(argv[i])+2) < MAX_CMDLINE_BUFFER_LENGTH)
{
strncat(linebuffer, " ", 1);
strncat(linebuffer, argv[i], strlen(argv[i]));
}
else
{
traceEvent( TRACE_ERROR, "too many argument");
exit(1);
}
}
/* strip trailing spaces */
while(strlen(linebuffer) && linebuffer[strlen(linebuffer)-1]==' ')
linebuffer[strlen(linebuffer)-1]= '\0';
/* build the new argv from the linebuffer */
effectiveargv = buildargv(&effectiveargc, linebuffer);
if (linebuffer)
{
free(linebuffer);
linebuffer = NULL;
}
/* {int k;for(k=0;k<effectiveargc;++k) printf("%s\n",effectiveargv[k]);} */
optarg = NULL;
while((opt = getopt_long(effectiveargc,
effectiveargv,
"K:k:a:bc:Eu:g:m:M:s:d:l:p:fvhrt:", long_options, NULL)) != EOF)
{
switch (opt)
{
case'K':
{
if ( encrypt_key )
{
fprintf(stderr, "Error: -K and -k options are mutually exclusive.\n");
exit(1);
}
else
{
strncpy( eee.keyschedule, optarg, N2N_PATHNAME_MAXLEN-1 );
eee.keyschedule[N2N_PATHNAME_MAXLEN-1]=0; /* strncpy does not add NULL if the source has no NULL. */
traceEvent(TRACE_DEBUG, "keyfile = '%s'\n", eee.keyschedule);
fprintf(stderr, "keyfile = '%s'\n", eee.keyschedule);
}
break;
}
case 'a': /* IP address and mode of TUNTAP interface */
{
scan_address(ip_addr, N2N_NETMASK_STR_SIZE,
ip_mode, N2N_IF_MODE_SIZE,
optarg );
break;
}
case 'c': /* community as a string */
{
memset( eee.community_name, 0, N2N_COMMUNITY_SIZE );
strncpy( (char *)eee.community_name, optarg, N2N_COMMUNITY_SIZE);
break;
}
case 'E': /* multicast ethernet addresses accepted. */
{
eee.drop_multicast=0;
traceEvent(TRACE_DEBUG, "Enabling ethernet multicast traffic\n");
break;
}
#ifndef WIN32
case 'u': /* unprivileged uid */
{
userid = atoi(optarg);
break;
}
case 'g': /* unprivileged uid */
{
groupid = atoi(optarg);
break;
}
#endif
#ifdef N2N_HAVE_DAEMON
case 'f' : /* do not fork as daemon */
{
eee.daemon=0;
break;
}
#endif /* #ifdef N2N_HAVE_DAEMON */
case 'm' : /* TUNTAP MAC address */
{
strncpy(device_mac,optarg,N2N_MACNAMSIZ);
break;
}
case 'M' : /* TUNTAP MTU */
{
mtu = atoi(optarg);
break;
}
case 'k': /* encrypt key */
{
if (strlen(eee.keyschedule) > 0 )
{
fprintf(stderr, "Error: -K and -k options are mutually exclusive.\n");
exit(1);
} else {
traceEvent(TRACE_DEBUG, "encrypt_key = '%s'\n", encrypt_key);
encrypt_key = strdup(optarg);
}
break;
}
case 'r': /* enable packet routing across n2n endpoints */
{
eee.allow_routing = 1;
break;
}
case 'l': /* supernode-list */
{
if ( eee.sn_num < N2N_EDGE_NUM_SUPERNODES )
{
strncpy( (eee.sn_ip_array[eee.sn_num]), optarg, N2N_EDGE_SN_HOST_SIZE);
traceEvent(TRACE_DEBUG, "Adding supernode[%u] = %s\n", (unsigned int)eee.sn_num, (eee.sn_ip_array[eee.sn_num]) );
++eee.sn_num;
}
else
{
fprintf(stderr, "Too many supernodes!\n" );
exit(1);
}
break;
}
#if defined(N2N_CAN_NAME_IFACE)
case 'd': /* TUNTAP name */
{
strncpy(tuntap_dev_name, optarg, N2N_IFNAMSIZ);
break;
}
#endif
case 'b':
{
eee.re_resolve_supernode_ip = 1;
break;
}
case 'p':
{
local_port = atoi(optarg);
break;
}
case 't':
{
mgmt_port = atoi(optarg);
break;
}
case 's': /* Subnet Mask */
{
if (0 != got_s)
{
traceEvent(TRACE_WARNING, "Multiple subnet masks supplied.");
}
strncpy(netmask, optarg, N2N_NETMASK_STR_SIZE);
got_s = 1;
break;
}
case 'h': /* help */
{
help();
break;
}
case 'v': /* verbose */
{
++traceLevel; /* do 2 -v flags to increase verbosity to DEBUG level*/
break;
}
} /* end switch */
}
#ifdef N2N_HAVE_DAEMON
if ( eee.daemon )
{
useSyslog=1; /* traceEvent output now goes to syslog. */
if ( -1 == daemon( 0, 0 ) )
{
traceEvent( TRACE_ERROR, "Failed to become daemon." );
exit(-5);
}
}
#endif /* #ifdef N2N_HAVE_DAEMON */
traceEvent( TRACE_NORMAL, "Starting n2n edge %s %s", n2n_sw_version, n2n_sw_buildDate );
for (i=0; i< N2N_EDGE_NUM_SUPERNODES; ++i )
{
traceEvent( TRACE_NORMAL, "supernode %u => %s\n", i, (eee.sn_ip_array[i]) );
}
supernode2addr( &(eee.supernode), eee.sn_ip_array[eee.sn_idx] );
for ( i=0; i<effectiveargc; ++i )
{
free( effectiveargv[i] );
}
free( effectiveargv );
effectiveargv = 0;
effectiveargc = 0;
if(!(
#ifdef __linux__
(tuntap_dev_name[0] != 0) &&
#endif
(eee.community_name[0] != 0) &&
(ip_addr[0] != 0)
) )
{
help();
}
if ( (NULL == encrypt_key ) && ( 0 == strlen(eee.keyschedule)) )
{
traceEvent(TRACE_WARNING, "Encryption is disabled in edge.");
eee.null_transop = 1;
}
#ifndef WIN32
/* If running suid root then we need to setuid before using the force. */
setuid( 0 );
/* setgid( 0 ); */
#endif
if ( 0 == strcmp( "dhcp", ip_mode ) )
{
traceEvent(TRACE_NORMAL, "Dynamic IP address assignment enabled.");
eee.dyn_ip_mode = 1;
}
else
{
traceEvent(TRACE_NORMAL, "ip_mode='%s'", ip_mode);
}
if(tuntap_open(&(eee.device), tuntap_dev_name, ip_mode, ip_addr, netmask, device_mac, mtu) < 0)
return(-1);
#ifndef WIN32
if ( (userid != 0) || (groupid != 0 ) ) {
traceEvent(TRACE_NORMAL, "Interface up. Dropping privileges to uid=%d, gid=%d",
(signed int)userid, (signed int)groupid);
/* Finished with the need for root privileges. Drop to unprivileged user. */
setreuid( userid, userid );
setregid( groupid, groupid );
}
#endif
if(local_port > 0)
traceEvent(TRACE_NORMAL, "Binding to local port %d", (signed int)local_port);
if ( encrypt_key ) {
if(edge_init_twofish( &eee, (uint8_t *)(encrypt_key), strlen(encrypt_key) ) < 0) {
fprintf(stderr, "Error: twofish setup failed.\n" );
return(-1);
}
} else if ( strlen(eee.keyschedule) > 0 ) {
if (edge_init_keyschedule( &eee ) != 0 ) {
fprintf(stderr, "Error: keyschedule setup failed.\n" );
return(-1);
}
}
/* else run in NULL mode */
eee.udp_sock = open_socket(local_port, 1 /*bind ANY*/ );
if(eee.udp_sock < 0)
{
traceEvent( TRACE_ERROR, "Failed to bind main UDP port %u", (signed int)local_port );
return(-1);
}
eee.udp_mgmt_sock = open_socket(mgmt_port, 0 /* bind LOOPBACK*/ );
if(eee.udp_mgmt_sock < 0)
{
traceEvent( TRACE_ERROR, "Failed to bind management UDP port %u", (unsigned int)N2N_EDGE_MGMT_PORT );
return(-1);
}
traceEvent(TRACE_NORMAL, "edge started");
update_supernode_reg(&eee, time(NULL) );
return run_loop(&eee);
}
static int run_loop(n2n_edge_t * eee )
{
int keep_running=1;
size_t numPurged;
time_t lastIfaceCheck=0;
time_t lastTransop=0;
#ifdef WIN32
startTunReadThread(eee);
#endif
/* Main loop
*
* select() is used to wait for input on either the TAP fd or the UDP/TCP
* socket. When input is present the data is read and processed by either
* readFromIPSocket() or readFromTAPSocket()
*/
while(keep_running)
{
int rc, max_sock = 0;
fd_set socket_mask;
struct timeval wait_time;
time_t nowTime;
FD_ZERO(&socket_mask);
FD_SET(eee->udp_sock, &socket_mask);
FD_SET(eee->udp_mgmt_sock, &socket_mask);
max_sock = max( eee->udp_sock, eee->udp_mgmt_sock );
#ifndef WIN32
FD_SET(eee->device.fd, &socket_mask);
max_sock = max( max_sock, eee->device.fd );
#endif
wait_time.tv_sec = SOCKET_TIMEOUT_INTERVAL_SECS; wait_time.tv_usec = 0;
rc = select(max_sock+1, &socket_mask, NULL, NULL, &wait_time);
nowTime=time(NULL);
/* Make sure ciphers are updated before the packet is treated. */
if ( ( nowTime - lastTransop ) > TRANSOP_TICK_INTERVAL )
{
lastTransop = nowTime;
n2n_tick_transop( eee, nowTime );
}
if(rc > 0)
{
/* Any or all of the FDs could have input; check them all. */
if(FD_ISSET(eee->udp_sock, &socket_mask))
{
/* Read a cooked socket from the internet socket. Writes on the TAP
* socket. */
readFromIPSocket(eee);
}
if(FD_ISSET(eee->udp_mgmt_sock, &socket_mask))
{
/* Read a cooked socket from the internet socket. Writes on the TAP
* socket. */
readFromMgmtSocket(eee, &keep_running);
}
#ifndef WIN32
if(FD_ISSET(eee->device.fd, &socket_mask))
{
/* Read an ethernet frame from the TAP socket. Write on the IP
* socket. */
readFromTAPSocket(eee);
}
#endif
}
/* Finished processing select data. */
update_supernode_reg(eee, nowTime);
numPurged = purge_expired_registrations( &(eee->known_peers) );
numPurged += purge_expired_registrations( &(eee->pending_peers) );
if ( numPurged > 0 )
{
traceEvent( TRACE_NORMAL, "Peer removed: pending=%u, operational=%u",
(unsigned int)peer_list_size( eee->pending_peers ),
(unsigned int)peer_list_size( eee->known_peers ) );
}
if ( eee->dyn_ip_mode &&
(( nowTime - lastIfaceCheck ) > IFACE_UPDATE_INTERVAL ) )
{
traceEvent(TRACE_NORMAL, "Re-checking dynamic IP address.");
tuntap_get_address( &(eee->device) );
lastIfaceCheck = nowTime;
}
} /* while */
send_deregister( eee, &(eee->supernode));
closesocket(eee->udp_sock);
tuntap_close(&(eee->device));
edge_deinit( eee );
return(0);
}