You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

243 lines
6.8 KiB

/**
* (C) 2007-20 - ntop.org and contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not see see <http://www.gnu.org/licenses/>
*
*/
#include "random_numbers.h"
// the following code offers an alterate pseudo random number generator
// namely XORSHIFT128+ to use instead of C's rand()
// its performance is on par with C's rand()
// the state must be seeded in a way that it is not all zero, choose some
// arbitrary defaults (in this case: taken from splitmix64)
static rn_generator_state_t rn_current_state = {
.a = 0x9E3779B97F4A7C15,
.b = 0xBF58476D1CE4E5B9
};
// used for mixing the initializing seed
static uint64_t splitmix64 (splitmix64_state_t *state) {
uint64_t result = state->s;
state->s = result + 0x9E3779B97F4A7C15;
result = (result ^ (result >> 30)) * 0xBF58476D1CE4E5B9;
result = (result ^ (result >> 27)) * 0x94D049BB133111EB;
return result ^ (result >> 31);
}
int n2n_srand (uint64_t seed) {
uint8_t i;
splitmix64_state_t smstate = { seed };
rn_current_state.a = 0;
rn_current_state.b = 0;
rn_current_state.a = splitmix64 (&smstate);
rn_current_state.b = splitmix64 (&smstate);
// the following lines could be deleted as soon as it is formally prooved that
// there is no seed leading to (a == b == 0). until then, just to be safe:
if((rn_current_state.a == 0) && (rn_current_state.b == 0)) {
rn_current_state.a = 0x9E3779B97F4A7C15;
rn_current_state.b = 0xBF58476D1CE4E5B9;
}
// stabilize in unlikely case of weak state with only a few bits set
for(i = 0; i < 32; i++)
n2n_rand();
return 0;
}
// the following code of xorshift128p was taken from
// https://en.wikipedia.org/wiki/Xorshift as of July, 2019
// and thus is considered public domain
uint64_t n2n_rand (void) {
uint64_t t = rn_current_state.a;
uint64_t const s = rn_current_state.b;
rn_current_state.a = s;
t ^= t << 23;
t ^= t >> 17;
t ^= s ^ (s >> 26);
rn_current_state.b = t;
return t + s;
}
// the following code tries to gather some entropy from several sources
// for use as seed. Note, that this code does not set the random generator
// state yet, a call to n2n_srand (n2n_seed()) would do
uint64_t n2n_seed (void) {
uint64_t seed = 0; /* this could even go uninitialized */
uint64_t ret = 0; /* this could even go uninitialized */
size_t i;
#ifdef SYS_getrandom
int rc = -1;
for(i = 0; (i < RND_RETRIES) && (rc != sizeof(seed)); i++) {
rc = syscall (SYS_getrandom, &seed, sizeof(seed), GRND_NONBLOCK);
// if successful, rc should contain the requested number of random bytes
if(rc != sizeof(seed)) {
if (errno != EAGAIN) {
traceEvent(TRACE_ERROR, "n2n_seed faced error errno=%u from getrandom syscall.", errno);
break;
}
}
}
// if we still see an EAGAIN error here, we must have run out of retries
if(errno == EAGAIN) {
traceEvent(TRACE_ERROR, "n2n_seed saw getrandom syscall indicate not being able to provide enough entropy yet.");
}
#endif
// as we want randomness, it does no harm to add up even uninitialized values or
// erroneously arbitrary values returned from the syscall for the first time
ret += seed;
// __RDRND__ is set only if architecturual feature is set, e.g. compiled with -march=native
#ifdef __RDRND__
for(i = 0; i < RND_RETRIES; i++) {
if(_rdrand64_step((unsigned long long*)&seed)) {
// success!
// from now on, we keep this inside the loop because in case of failure
// and with unchanged values, we do not want to double the previous value
ret += seed;
break;
}
// continue loop to try again otherwise
}
if(i == RND_RETRIES) {
traceEvent(TRACE_ERROR, "n2n_seed was not able to get a hardware generated random number from RDRND.");
}
#endif
// __RDSEED__ ist set only if architecturual feature is set, e.g. compile with -march=native
#ifdef __RDSEED__
for(i = 0; i < RND_RETRIES; i++) {
if(_rdseed64_step((unsigned long long*)&seed)) {
// success!
ret += seed;
break;
}
// continue loop to try again otherwise
}
if(i == RND_RETRIES) {
traceEvent(TRACE_ERROR, "n2n_seed was not able to get a hardware generated random number from RDSEED.");
}
#endif
#ifdef WIN32
HCRYPTPROV crypto_provider;
CryptAcquireContext (&crypto_provider, NULL, NULL,
PROV_RSA_FULL, CRYPT_VERIFYCONTEXT);
CryptGenRandom (crypto_provider, 8, &seed);
CryptReleaseContext (crypto_provider, 0);
ret += seed;
#endif
seed = time(NULL); /* UTC in seconds */
ret += seed;
seed = clock(); /* ticks since program start */
seed *= 18444244737;
ret += seed;
return ret;
}
// an integer squrare root approximation
// from https://stackoverflow.com/a/1100591
static int ftbl[33] = {
0, 1, 1, 2, 2, 4, 5, 8, 11, 16, 22, 32, 45, 64, 90,
128, 181 ,256 ,362, 512, 724, 1024, 1448, 2048, 2896,
4096, 5792, 8192, 11585, 16384, 23170, 32768, 46340 };
static int ftbl2[32] = {
32768, 33276, 33776, 34269, 34755, 35235, 35708, 36174,
36635, 37090, 37540, 37984, 38423, 38858, 39287, 39712,
40132, 40548, 40960, 41367, 41771, 42170, 42566, 42959,
43347, 43733, 44115, 44493, 44869, 45241, 45611, 45977 };
static int i_sqrt (int val) {
int cnt = 0;
int t = val;
while(t) {
cnt++;
t>>=1;
}
if(6 >= cnt)
t = (val << (6-cnt));
else
t = (val >> (cnt-6));
return (ftbl[cnt] * ftbl2[t & 31]) >> 15;
}
static int32_t int_sqrt (int val) {
int ret;
ret = i_sqrt (val);
ret += i_sqrt (val - ret * ret) / 16;
return ret;
}
// returns a random number from [0, max_n] with higher probability towards the borders
uint32_t n2n_rand_sqr (uint32_t max_n) {
uint32_t raw_max = 0;
uint32_t raw_rnd = 0;
int32_t ret = 0;
raw_max = (max_n+2) * (max_n+2);
raw_rnd = n2n_rand() % (raw_max);
ret = int_sqrt(raw_rnd) / 2;
ret = (raw_rnd & 1) ? ret : -ret;
ret = max_n / 2 + ret;
if(ret < 0)
ret = 0;
if (ret > max_n)
ret = max_n;
return ret;
}