In order to use n2n on macOS, you first need to install support for TUN/TAP interfaces:
```bash
brew tap homebrew/cask
brew cask install tuntap
```
If you are on a modern version of macOS (i.e. Catalina), the commands above will ask you to enable the TUN/TAP kernel extension in System Preferences → Security & Privacy → General.
For more information refer to vendor documentation or the [Apple Technical Note](https://developer.apple.com/library/content/technotes/tn2459/_index.html).
The easiest way to boosting speed is by allowing the compiler to apply optimization to the code. To let the compiler know, the configuration process can take in the optionally specified compiler flag `-O3`:
The `tools/n2n-benchmark` tool reports speed-ups of 200% or more! There is no known risk in terms of instable code or so.
## Hardware Features
Some parts of the code can be compiled to benefit from available hardware acceleration. It needs to be decided at compile-time. So, if compiling for a specific platform with known features (maybe the local one), it should be specified to the compiler, for example through the `-march=sandybridge` (you name it) or just `-march=native` for local use.
So far, the following portions of n2n's code benefit from hardware acceleration:
Some ciphers' speed can take advantage of OpenSSL support which is disabled by default as the built-in ciphers already prove reasonably fast in most cases. OpenSSL support can be configured using
`./configure --with-openssl`
which then will include OpenSSL 1.0 or 1.1 if found on the system. This can be combined with the hardware support and compiler optimizations such as