You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1798 lines
71 KiB

4 years ago
/**
* (C) 2007-21 - ntop.org and contributors
4 years ago
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
4 years ago
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not see see <http://www.gnu.org/licenses/>
*
*/
#include "n2n.h"
#define HASH_FIND_COMMUNITY(head, name, out) HASH_FIND_STR(head, name, out)
static int try_forward (n2n_sn_t * sss,
const struct sn_community *comm,
const n2n_common_t * cmn,
const n2n_mac_t dstMac,
uint8_t from_supernode,
const uint8_t * pktbuf,
size_t pktsize);
static ssize_t sendto_sock (n2n_sn_t *sss,
const n2n_sock_t *sock,
const uint8_t *pktbuf,
size_t pktsize);
static int sendto_mgmt (n2n_sn_t *sss,
const struct sockaddr_in *sender_sock,
const uint8_t *mgmt_buf,
size_t mgmt_size);
static int try_broadcast (n2n_sn_t * sss,
const struct sn_community *comm,
const n2n_common_t * cmn,
const n2n_mac_t srcMac,
uint8_t from_supernode,
const uint8_t * pktbuf,
size_t pktsize);
static uint16_t reg_lifetime (n2n_sn_t *sss);
static int update_edge (n2n_sn_t *sss,
const n2n_REGISTER_SUPER_t* reg,
struct sn_community *comm,
const n2n_sock_t *sender_sock,
int skip_add,
time_t now);
static int purge_expired_communities (n2n_sn_t *sss,
time_t* p_last_purge,
time_t now);
static int sort_communities (n2n_sn_t *sss,
time_t* p_last_sort,
time_t now);
static int process_mgmt (n2n_sn_t *sss,
const struct sockaddr_in *sender_sock,
const uint8_t *mgmt_buf,
size_t mgmt_size,
time_t now);
static int process_udp (n2n_sn_t *sss,
const struct sockaddr_in *sender_sock,
uint8_t *udp_buf,
size_t udp_size,
time_t now);
/* ************************************** */
static int try_forward (n2n_sn_t * sss,
const struct sn_community *comm,
const n2n_common_t * cmn,
const n2n_mac_t dstMac,
uint8_t from_supernode,
const uint8_t * pktbuf,
size_t pktsize) {
struct peer_info * scan;
macstr_t mac_buf;
n2n_sock_str_t sockbuf;
HASH_FIND_PEER(comm->edges, dstMac, scan);
if(NULL != scan) {
int data_sent_len;
data_sent_len = sendto_sock(sss, &(scan->sock), pktbuf, pktsize);
if(data_sent_len == pktsize) {
++(sss->stats.fwd);
traceEvent(TRACE_DEBUG, "unicast %lu to [%s] %s",
pktsize,
sock_to_cstr(sockbuf, &(scan->sock)),
macaddr_str(mac_buf, scan->mac_addr));
} else {
++(sss->stats.errors);
traceEvent(TRACE_ERROR, "unicast %lu to [%s] %s FAILED (%d: %s)",
pktsize,
sock_to_cstr(sockbuf, &(scan->sock)),
macaddr_str(mac_buf, scan->mac_addr),
errno, strerror(errno));
}
} else {
if(!from_supernode) {
/* Forwarding packet to all federated supernodes. */
traceEvent(TRACE_DEBUG, "Unknown MAC. Broadcasting packet to all federated supernodes.");
try_broadcast(sss, NULL, cmn, sss->mac_addr, from_supernode, pktbuf, pktsize);
} else {
traceEvent(TRACE_DEBUG, "try_forward unknown MAC. Dropping the packet.");
/* Not a known MAC so drop. */
return(-2);
}
}
return(0);
}
/** Send a datagram to the destination embodied in a n2n_sock_t.
*
* @return -1 on error otherwise number of bytes sent
*/
static ssize_t sendto_sock (n2n_sn_t *sss,
const n2n_sock_t *sock,
const uint8_t *pktbuf,
size_t pktsize) {
n2n_sock_str_t sockbuf;
if(AF_INET == sock->family) {
struct sockaddr_in udpsock;
udpsock.sin_family = AF_INET;
udpsock.sin_port = htons(sock->port);
memcpy(&(udpsock.sin_addr.s_addr), &(sock->addr.v4), IPV4_SIZE);
traceEvent(TRACE_DEBUG, "sendto_sock %lu to [%s]",
pktsize,
sock_to_cstr(sockbuf, sock));
return sendto(sss->sock, pktbuf, pktsize, 0,
(const struct sockaddr *)&udpsock, sizeof(struct sockaddr_in));
} else {
/* AF_INET6 not implemented */
errno = EAFNOSUPPORT;
return -1;
}
}
/** Try and broadcast a message to all edges in the community.
*
* This will send the exact same datagram to zero or more edges registered to
* the supernode.
*/
static int try_broadcast (n2n_sn_t * sss,
const struct sn_community *comm,
const n2n_common_t * cmn,
const n2n_mac_t srcMac,
uint8_t from_supernode,
const uint8_t * pktbuf,
size_t pktsize) {
struct peer_info *scan, *tmp;
macstr_t mac_buf;
n2n_sock_str_t sockbuf;
traceEvent(TRACE_DEBUG, "try_broadcast");
/* We have to make sure that a broadcast reaches the other supernodes and edges
* connected to them. try_broadcast needs a from_supernode parameter: if set
* do forward to edges of community only. If unset. forward to all locally known
* nodes and all supernodes */
if (!from_supernode) {
HASH_ITER(hh, sss->federation->edges, scan, tmp) {
int data_sent_len;
data_sent_len = sendto_sock(sss, &(scan->sock), pktbuf, pktsize);
if(data_sent_len != pktsize) {
++(sss->stats.errors);
traceEvent(TRACE_WARNING, "multicast %lu to supernode [%s] %s failed %s",
pktsize,
sock_to_cstr(sockbuf, &(scan->sock)),
macaddr_str(mac_buf, scan->mac_addr),
strerror(errno));
} else {
++(sss->stats.broadcast);
traceEvent(TRACE_DEBUG, "multicast %lu to supernode [%s] %s",
pktsize,
sock_to_cstr(sockbuf, &(scan->sock)),
macaddr_str(mac_buf, scan->mac_addr));
}
}
}
if(comm) {
HASH_ITER(hh, comm->edges, scan, tmp) {
if(memcmp(srcMac, scan->mac_addr, sizeof(n2n_mac_t)) != 0) {
/* REVISIT: exclude if the destination socket is where the packet came from. */
int data_sent_len;
data_sent_len = sendto_sock(sss, &(scan->sock), pktbuf, pktsize);
if(data_sent_len != pktsize) {
++(sss->stats.errors);
traceEvent(TRACE_WARNING, "multicast %lu to [%s] %s failed %s",
pktsize,
sock_to_cstr(sockbuf, &(scan->sock)),
macaddr_str(mac_buf, scan->mac_addr),
strerror(errno));
} else {
++(sss->stats.broadcast);
traceEvent(TRACE_DEBUG, "multicast %lu to [%s] %s",
pktsize,
sock_to_cstr(sockbuf, &(scan->sock)),
macaddr_str(mac_buf, scan->mac_addr));
}
}
}
}
return 0;
}
/** Initialise some fields of the community structure **/
int comm_init (struct sn_community *comm, char *cmn) {
strncpy((char*)comm->community, cmn, N2N_COMMUNITY_SIZE - 1);
comm->community[N2N_COMMUNITY_SIZE - 1] = '\0';
comm->is_federation = IS_NO_FEDERATION;
return 0; /* OK */
}
/** Initialise the supernode structure */
int sn_init(n2n_sn_t *sss) {
int i;
size_t idx;
#ifdef WIN32
initWin32();
#endif
pearson_hash_init();
memset(sss, 0, sizeof(n2n_sn_t));
sss->daemon = 1; /* By defult run as a daemon. */
sss->lport = N2N_SN_LPORT_DEFAULT;
sss->mport = N2N_SN_MGMT_PORT;
sss->sock = -1;
sss->mgmt_sock = -1;
sss->min_auto_ip_net.net_addr = inet_addr(N2N_SN_MIN_AUTO_IP_NET_DEFAULT);
sss->min_auto_ip_net.net_addr = ntohl(sss->min_auto_ip_net.net_addr);
sss->min_auto_ip_net.net_bitlen = N2N_SN_AUTO_IP_NET_BIT_DEFAULT;
sss->max_auto_ip_net.net_addr = inet_addr(N2N_SN_MAX_AUTO_IP_NET_DEFAULT);
sss->max_auto_ip_net.net_addr = ntohl(sss->max_auto_ip_net.net_addr);
sss->max_auto_ip_net.net_bitlen = N2N_SN_AUTO_IP_NET_BIT_DEFAULT;
sss->federation = (struct sn_community *)calloc(1, sizeof(struct sn_community));
/* Initialize the federation */
if(sss->federation) {
strncpy(sss->federation->community, (char*)FEDERATION_NAME, N2N_COMMUNITY_SIZE - 1);
sss->federation->community[N2N_COMMUNITY_SIZE - 1] = '\0';
/* enable the flag for federation */
sss->federation->is_federation = IS_FEDERATION;
sss->federation->purgeable = COMMUNITY_UNPURGEABLE;
/* header encryption enabled by default */
sss->federation->header_encryption = HEADER_ENCRYPTION_ENABLED;
/*setup the encryption key */
packet_header_setup_key(sss->federation->community, &(sss->federation->header_encryption_ctx), &(sss->federation->header_iv_ctx));
sss->federation->edges = NULL;
}
n2n_srand(n2n_seed());
/* Random auth token */
sss->auth.scheme = n2n_auth_simple_id;
for(idx = 0; idx < N2N_AUTH_TOKEN_SIZE; ++idx) {
sss->auth.token[idx] = n2n_rand() % 0xff;
}
sss->auth.toksize = sizeof(sss->auth.token);
/* Random MAC address */
for(i = 0; i < 6; i++) {
sss->mac_addr[i] = n2n_rand();
}
sss->mac_addr[0] &= ~0x01; /* Clear multicast bit */
sss->mac_addr[0] |= 0x02; /* Set locally-assigned bit */
return 0; /* OK */
}
/** Deinitialise the supernode structure and deallocate any memory owned by
* it. */
void sn_term (n2n_sn_t *sss) {
struct sn_community *community, *tmp;
struct sn_community_regular_expression *re, *tmp_re;
if(sss->sock >= 0) {
closesocket(sss->sock);
}
sss->sock = -1;
if(sss->mgmt_sock >= 0) {
closesocket(sss->mgmt_sock);
}
sss->mgmt_sock = -1;
HASH_ITER(hh, sss->communities, community, tmp) {
clear_peer_list(&community->edges);
if(NULL != community->header_encryption_ctx) {
free(community->header_encryption_ctx);
}
HASH_DEL(sss->communities, community);
free(community);
}
HASH_ITER(hh, sss->rules, re, tmp_re) {
HASH_DEL(sss->rules, re);
if (NULL != re->rule) {
free(re->rule);
}
free(re);
}
#ifdef WIN32
destroyWin32();
#endif
}
/** Determine the appropriate lifetime for new registrations.
*
* If the supernode has been put into a pre-shutdown phase then this lifetime
* should not allow registrations to continue beyond the shutdown point.
*/
static uint16_t reg_lifetime (n2n_sn_t *sss) {
/* NOTE: UDP firewalls usually have a 30 seconds timeout */
return 15;
}
/** Compare two authentication tokens. It is called by update_edge
* and in UNREGISTER_SUPER handling to compare the stored auth token
* with the one received from the packet.
*/
static int auth_edge (const n2n_auth_t *auth1, const n2n_auth_t *auth2) {
/* 0 = success (tokens are equal). */
return (memcmp(auth1, auth2, sizeof(n2n_auth_t)));
}
/** Update the edge table with the details of the edge which contacted the
* supernode. */
static int update_edge (n2n_sn_t *sss,
const n2n_REGISTER_SUPER_t* reg,
struct sn_community *comm,
const n2n_sock_t *sender_sock,
int skip_add,
time_t now) {
macstr_t mac_buf;
n2n_sock_str_t sockbuf;
struct peer_info *scan, *iter, *tmp;
int auth;
int ret;
traceEvent(TRACE_DEBUG, "update_edge for %s [%s]",
macaddr_str(mac_buf, reg->edgeMac),
sock_to_cstr(sockbuf, sender_sock));
HASH_FIND_PEER(comm->edges, reg->edgeMac, scan);
// if unknown, make sure it is also not known by IP address
if(NULL == scan) {
HASH_ITER(hh,comm->edges,iter,tmp) {
if(iter->dev_addr.net_addr == reg->dev_addr.net_addr) {
scan = iter;
HASH_DEL(comm->edges, scan);
memcpy(scan->mac_addr, reg->edgeMac, sizeof(n2n_mac_t));
HASH_ADD_PEER(comm->edges, scan);
break;
}
}
}
if(NULL == scan) {
/* Not known */
if(skip_add == SN_ADD) {
scan = (struct peer_info *) calloc(1, sizeof(struct peer_info)); /* deallocated in purge_expired_registrations */
memcpy(&(scan->mac_addr), reg->edgeMac, sizeof(n2n_mac_t));
scan->dev_addr.net_addr = reg->dev_addr.net_addr;
scan->dev_addr.net_bitlen = reg->dev_addr.net_bitlen;
memcpy((char*)scan->dev_desc, reg->dev_desc, N2N_DESC_SIZE);
memcpy(&(scan->sock), sender_sock, sizeof(n2n_sock_t));
memcpy(&(scan->last_cookie), reg->cookie, sizeof(N2N_COOKIE_SIZE));
memcpy(&(scan->auth), &(reg->auth), sizeof(n2n_auth_t));
scan->last_valid_time_stamp = initial_time_stamp();
HASH_ADD_PEER(comm->edges, scan);
traceEvent(TRACE_INFO, "update_edge created %s ==> %s",
macaddr_str(mac_buf, reg->edgeMac),
sock_to_cstr(sockbuf, sender_sock));
}
ret = update_edge_new_sn;
} else {
/* Known */
if(!sock_equal(sender_sock, &(scan->sock))) {
if((auth = auth_edge(&(scan->auth), &(reg->auth))) == 0) {
memcpy(&(scan->sock), sender_sock, sizeof(n2n_sock_t));
memcpy(&(scan->last_cookie), reg->cookie, sizeof(N2N_COOKIE_SIZE));
traceEvent(TRACE_INFO, "update_edge updated %s ==> %s",
macaddr_str(mac_buf, reg->edgeMac),
sock_to_cstr(sockbuf, sender_sock));
ret = update_edge_sock_change;
} else {
traceEvent(TRACE_INFO, "authentication failed");
ret = update_edge_auth_fail;
}
} else {
memcpy(&(scan->last_cookie), reg->cookie, sizeof(N2N_COOKIE_SIZE));
traceEvent(TRACE_DEBUG, "update_edge unchanged %s ==> %s",
macaddr_str(mac_buf, reg->edgeMac),
sock_to_cstr(sockbuf, sender_sock));
ret = update_edge_no_change;
}
}
if(scan != NULL) {
scan->last_seen = now;
}
return ret;
}
/** checks if a certain ip address is still available, i.e. not used by any other edge of a given community */
static int ip_addr_available (struct sn_community *comm, n2n_ip_subnet_t *ip_addr) {
int success = 1;
struct peer_info *peer, *tmp_peer;
// prerequisite: list of peers is sorted according to peer's tap ip address
HASH_ITER(hh, comm->edges, peer, tmp_peer) {
if(peer->dev_addr.net_addr > ip_addr->net_addr) {
break;
}
if(peer->dev_addr.net_addr == ip_addr->net_addr) {
success = 0;
break;
}
}
return success;
}
static signed int peer_tap_ip_sort (struct peer_info *a, struct peer_info *b) {
uint32_t a_host_id = a->dev_addr.net_addr & (~bitlen2mask(a->dev_addr.net_bitlen));
uint32_t b_host_id = b->dev_addr.net_addr & (~bitlen2mask(b->dev_addr.net_bitlen));
return ((signed int)a_host_id - (signed int)b_host_id);
}
/** The IP address assigned to the edge by the auto ip address function of sn. */
static int assign_one_ip_addr (struct sn_community *comm, n2n_desc_t dev_desc, n2n_ip_subnet_t *ip_addr) {
struct peer_info *peer, *tmp_peer;
uint32_t tmp, success, net_id, mask, max_host, host_id = 1;
dec_ip_bit_str_t ip_bit_str = {'\0'};
mask = bitlen2mask(comm->auto_ip_net.net_bitlen);
net_id = comm->auto_ip_net.net_addr & mask;
max_host = ~mask;
// sorting is a prerequisite for more efficient availabilitiy check
HASH_SORT(comm->edges, peer_tap_ip_sort);
// first proposal derived from hash of mac address
tmp = pearson_hash_32(dev_desc, sizeof(n2n_desc_t)) & max_host;
if(tmp == 0) tmp++; /* avoid 0 host */
if(tmp == max_host) tmp--; /* avoid broadcast address */
tmp |= net_id;
// candidate
ip_addr->net_bitlen = comm->auto_ip_net.net_bitlen;
// check for availability starting from proposal, then downwards, ...
for(host_id = tmp; host_id > net_id; host_id--) {
ip_addr->net_addr = host_id;
success = ip_addr_available(comm, ip_addr);
if(success) {
break;
}
}
// ... then upwards
if(!success) {
for(host_id = tmp + 1; host_id < (net_id + max_host); host_id++) {
ip_addr->net_addr = host_id;
success = ip_addr_available(comm, ip_addr);
if(success) {
break;
}
}
}
if(success) {
traceEvent(TRACE_INFO, "Assign IP %s to tap adapter of edge.", ip_subnet_to_str(ip_bit_str, ip_addr));
return 0;
} else {
traceEvent(TRACE_WARNING, "No assignable IP to edge tap adapter.");
return -1;
}
}
/** checks if a certain sub-network is still available, i.e. does not cut any other community's sub-network */
int subnet_available (n2n_sn_t *sss,
struct sn_community *comm,
uint32_t net_id,
uint32_t mask) {
struct sn_community *cmn, *tmpCmn;
int success = 1;
HASH_ITER(hh, sss->communities, cmn, tmpCmn) {
if(cmn == comm) {
continue;
}
if(cmn->is_federation == IS_FEDERATION) {
continue;
}
if((net_id <= (cmn->auto_ip_net.net_addr + ~bitlen2mask(cmn->auto_ip_net.net_bitlen)))
&&(net_id + ~mask >= cmn->auto_ip_net.net_addr)) {
success = 0;
break;
}
}
return success;
}
/** The IP address range (subnet) assigned to the community by the auto ip address function of sn. */
int assign_one_ip_subnet (n2n_sn_t *sss,
struct sn_community *comm) {
uint32_t net_id, net_id_i, mask, net_increment;
uint32_t no_subnets;
uint8_t success;
in_addr_t net;
mask = bitlen2mask(sss->min_auto_ip_net.net_bitlen);
// number of possible sub-networks
no_subnets = (sss->max_auto_ip_net.net_addr - sss->min_auto_ip_net.net_addr);
no_subnets >>= (32 - sss->min_auto_ip_net.net_bitlen);
no_subnets += 1;
// proposal for sub-network to choose
net_id = pearson_hash_32((const uint8_t *)comm->community, N2N_COMMUNITY_SIZE) % no_subnets;
net_id = sss->min_auto_ip_net.net_addr + (net_id << (32 - sss->min_auto_ip_net.net_bitlen));
// check for availability starting from net_id, then downwards, ...
net_increment = (~mask+1);
for(net_id_i = net_id; net_id_i >= sss->min_auto_ip_net.net_addr; net_id_i -= net_increment) {
success = subnet_available(sss, comm, net_id_i, mask);
if(success) {
break;
}
}
// ... then upwards
if(!success) {
for(net_id_i = net_id + net_increment; net_id_i <= sss->max_auto_ip_net.net_addr; net_id_i += net_increment) {
success = subnet_available(sss, comm, net_id_i, mask);
if(success) {
break;
}
}
}
if(success) {
comm->auto_ip_net.net_addr = net_id_i;
comm->auto_ip_net.net_bitlen = sss->min_auto_ip_net.net_bitlen;
net = htonl(comm->auto_ip_net.net_addr);
traceEvent(TRACE_INFO, "Assigned sub-network %s/%u to community '%s'.",
inet_ntoa(*(struct in_addr *) &net),
comm->auto_ip_net.net_bitlen,
comm->community);
return 0;
} else {
comm->auto_ip_net.net_addr = 0;
comm->auto_ip_net.net_bitlen = 0;
traceEvent(TRACE_WARNING, "No assignable sub-network left for community '%s'.",
comm->community);
return -1;
}
}
/***
*
* For a given packet, find the apporopriate internal last valid time stamp for lookup
* and verify it (and also update, if applicable).
*/
static int find_edge_time_stamp_and_verify (struct peer_info * edges,
int from_supernode, n2n_mac_t mac,
uint64_t stamp, int allow_jitter) {
uint64_t * previous_stamp = NULL;
if(!from_supernode) {
struct peer_info *edge;
HASH_FIND_PEER(edges, mac, edge);
if(edge) {
// time_stamp_verify_and_update allows the pointer a previous stamp to be NULL
// if it is a (so far) unknown edge
previous_stamp = &(edge->last_valid_time_stamp);
}
}
// failure --> 0; success --> 1
return (time_stamp_verify_and_update(stamp, previous_stamp, allow_jitter));
}
static int re_register_and_purge_supernodes (n2n_sn_t *sss, struct sn_community *comm, time_t *p_last_re_reg_and_purge, time_t now) {
time_t time;
struct peer_info *peer, *tmp;
if((now - (*p_last_re_reg_and_purge)) < RE_REG_AND_PURGE_FREQUENCY) {
return 0;
}
if(comm != NULL) {
HASH_ITER(hh,comm->edges,peer,tmp) {
time = now - peer->last_seen;
if(time <= LAST_SEEN_SN_ACTIVE) {
continue;
}
if((time < LAST_SEEN_SN_INACTIVE)
|| (peer->purgeable == SN_UNPURGEABLE)) {
/* re-regitser (send REGISTER_SUPER) */
uint8_t pktbuf[N2N_PKT_BUF_SIZE] = {0};
size_t idx;
/* ssize_t sent; */
n2n_common_t cmn;
n2n_cookie_t cookie;
n2n_REGISTER_SUPER_t reg;
n2n_sock_str_t sockbuf;
memset(&cmn, 0, sizeof(cmn));
memset(&reg, 0, sizeof(reg));
cmn.ttl = N2N_DEFAULT_TTL;
cmn.pc = n2n_register_super;
cmn.flags = N2N_FLAGS_FROM_SUPERNODE;
memcpy(cmn.community, comm->community, N2N_COMMUNITY_SIZE);
for(idx = 0; idx < N2N_COOKIE_SIZE; ++idx) {
cookie[idx] = n2n_rand() % 0xff;
}
memcpy(reg.cookie, cookie, N2N_COOKIE_SIZE);
reg.dev_addr.net_addr = ntohl(peer->dev_addr.net_addr);
reg.dev_addr.net_bitlen = mask2bitlen(ntohl(peer->dev_addr.net_bitlen));
memcpy(&(reg.auth), &(sss->auth), sizeof(n2n_auth_t));
idx = 0;
encode_mac(reg.edgeMac, &idx, sss->mac_addr);
idx = 0;
encode_REGISTER_SUPER(pktbuf, &idx, &cmn, &reg);
traceEvent(TRACE_DEBUG, "send REGISTER_SUPER to %s",
sock_to_cstr(sockbuf, &(peer->sock)));
packet_header_encrypt(pktbuf, idx, idx,
comm->header_encryption_ctx, comm->header_iv_ctx,
time_stamp());
/* sent = */ sendto_sock(sss, &(peer->sock), pktbuf, idx);
}
if(time >= LAST_SEEN_SN_INACTIVE) {
purge_expired_registrations(&(comm->edges), &time, LAST_SEEN_SN_INACTIVE); /* purge not-seen-long-time supernodes*/
}
}
}
(*p_last_re_reg_and_purge) = now;
return 0; /* OK */
}
static int purge_expired_communities (n2n_sn_t *sss,
time_t* p_last_purge,
time_t now) {
struct sn_community *comm, *tmp;
size_t num_reg = 0;
if((now - (*p_last_purge)) < PURGE_REGISTRATION_FREQUENCY) {
return 0;
}
traceEvent(TRACE_DEBUG, "Purging old communities and edges");
HASH_ITER(hh, sss->communities, comm, tmp) {
num_reg += purge_peer_list(&comm->edges, now - REGISTRATION_TIMEOUT);
if((comm->edges == NULL) && (comm->purgeable == COMMUNITY_PURGEABLE)) {
traceEvent(TRACE_INFO, "Purging idle community %s", comm->community);
if(NULL != comm->header_encryption_ctx) {
/* this should not happen as 'purgeable' and thus only communities w/o encrypted header here */
free(comm->header_encryption_ctx);
}
HASH_DEL(sss->communities, comm);
free(comm);
}
}
(*p_last_purge) = now;
traceEvent(TRACE_DEBUG, "Remove %ld edges", num_reg);
return 0;
}
static int number_enc_packets_sort (struct sn_community *a, struct sn_community *b) {
// comparison function for sorting communities in descending order of their
// number_enc_packets-fields
return (b->number_enc_packets - a->number_enc_packets);
}
static int sort_communities (n2n_sn_t *sss,
time_t* p_last_sort,
time_t now) {
struct sn_community *comm, *tmp;
if((now - (*p_last_sort)) < SORT_COMMUNITIES_INTERVAL) {
return 0;
}
// this routine gets periodically called as defined in SORT_COMMUNITIES_INTERVAL
// it sorts the communities in descending order of their number_enc_packets-fields...
HASH_SORT(sss->communities, number_enc_packets_sort);
// ... and afterward resets the number_enc__packets-fields to zero
// (other models could reset it to half of their value to respect history)
HASH_ITER(hh, sss->communities, comm, tmp) {
comm->number_enc_packets = 0;
}
(*p_last_sort) = now;
return 0;
}
static int process_mgmt (n2n_sn_t *sss,
const struct sockaddr_in *sender_sock,
const uint8_t *mgmt_buf,
size_t mgmt_size,
time_t now) {
char resbuf[N2N_SN_PKTBUF_SIZE];
size_t ressize = 0;
uint32_t num_edges = 0;
uint32_t num = 0;
struct sn_community *community, *tmp;
struct peer_info *peer, *tmpPeer;
macstr_t mac_buf;
n2n_sock_str_t sockbuf;
dec_ip_bit_str_t ip_bit_str = {'\0'};
traceEvent(TRACE_DEBUG, "process_mgmt");
ressize += snprintf(resbuf + ressize, N2N_SN_PKTBUF_SIZE - ressize,
" id tun_tap MAC edge hint last_seen\n");
ressize += snprintf(resbuf + ressize, N2N_SN_PKTBUF_SIZE - ressize,
"-------------------------------------------------------------------------------------------------\n");
HASH_ITER(hh, sss->communities, community, tmp) {
num_edges += HASH_COUNT(community->edges);
ressize += snprintf(resbuf + ressize, N2N_SN_PKTBUF_SIZE - ressize,
"community: %s\n", community->community);
sendto_mgmt(sss, sender_sock, (const uint8_t *) resbuf, ressize);
ressize = 0;
num = 0;
HASH_ITER(hh, community->edges, peer, tmpPeer) {
ressize += snprintf(resbuf + ressize, N2N_SN_PKTBUF_SIZE - ressize,
" %-4u %-18s %-17s %-21s %-15s %lu\n",
++num, ip_subnet_to_str(ip_bit_str, &peer->dev_addr),
macaddr_str(mac_buf, peer->mac_addr),
sock_to_cstr(sockbuf, &(peer->sock)),
peer->dev_desc,
now - peer->last_seen);
sendto_mgmt(sss, sender_sock, (const uint8_t *) resbuf, ressize);
ressize = 0;
}
}
ressize += snprintf(resbuf + ressize, N2N_SN_PKTBUF_SIZE - ressize,
"----------------------------------------------------------------------------------------------------\n");
ressize += snprintf(resbuf + ressize, N2N_SN_PKTBUF_SIZE - ressize,
"uptime %lu | ", (now - sss->start_time));
ressize += snprintf(resbuf + ressize, N2N_SN_PKTBUF_SIZE - ressize,
"edges %u | ",
num_edges);
ressize += snprintf(resbuf + ressize, N2N_SN_PKTBUF_SIZE - ressize,
"reg_sup %u | ",
(unsigned int) sss->stats.reg_super);
ressize += snprintf(resbuf + ressize, N2N_SN_PKTBUF_SIZE - ressize,
"reg_nak %u | ",
(unsigned int) sss->stats.reg_super_nak);
ressize += snprintf(resbuf + ressize, N2N_SN_PKTBUF_SIZE - ressize,
"errors %u \n",
(unsigned int) sss->stats.errors);
ressize += snprintf(resbuf + ressize, N2N_SN_PKTBUF_SIZE - ressize,
"fwd %u | ",
(unsigned int) sss->stats.fwd);
ressize += snprintf(resbuf + ressize, N2N_SN_PKTBUF_SIZE - ressize,
"broadcast %u | ",
(unsigned int) sss->stats.broadcast);
ressize += snprintf(resbuf + ressize, N2N_SN_PKTBUF_SIZE - ressize,
"cur_cmnts %u\n", HASH_COUNT(sss->communities));
ressize += snprintf(resbuf + ressize, N2N_SN_PKTBUF_SIZE - ressize,
"last_fwd %lu sec ago | ",
(long unsigned int) (now - sss->stats.last_fwd));
ressize += snprintf(resbuf + ressize, N2N_SN_PKTBUF_SIZE - ressize,
"last reg %lu sec ago\n\n",
(long unsigned int) (now - sss->stats.last_reg_super));
sendto_mgmt(sss, sender_sock, (const uint8_t *) resbuf, ressize);
return 0;
}
static int sendto_mgmt (n2n_sn_t *sss,
const struct sockaddr_in *sender_sock,
const uint8_t *mgmt_buf,
size_t mgmt_size) {
ssize_t r = sendto(sss->mgmt_sock, mgmt_buf, mgmt_size, 0 /*flags*/,
(struct sockaddr *)sender_sock, sizeof (struct sockaddr_in));
if(r <= 0) {
++(sss->stats.errors);
traceEvent (TRACE_ERROR, "sendto_mgmt : sendto failed. %s", strerror (errno));
return -1;
}
return 0;
}
/** Examine a datagram and determine what to do with it.
*
*/
static int process_udp (n2n_sn_t * sss,
const struct sockaddr_in * sender_sock,
uint8_t * udp_buf,
size_t udp_size,
time_t now) {
n2n_common_t cmn; /* common fields in the packet header */
size_t rem;
size_t idx;
size_t msg_type;
uint8_t from_supernode;
macstr_t mac_buf;
macstr_t mac_buf2;
n2n_sock_str_t sockbuf;
char buf[32];
struct sn_community *comm, *tmp;
uint64_t stamp;
traceEvent(TRACE_DEBUG, "Processing incoming UDP packet [len: %lu][sender: %s:%u]",
udp_size, intoa(ntohl(sender_sock->sin_addr.s_addr), buf, sizeof(buf)),
ntohs(sender_sock->sin_port));
/* check if header is unencrypted. the following check is around 99.99962 percent reliable.
* it heavily relies on the structure of packet's common part
* changes to wire.c:encode/decode_common need to go together with this code */
if(udp_size < 20) {
traceEvent(TRACE_DEBUG, "process_udp dropped a packet too short to be valid.");
return -1;
}
if((udp_buf[19] == (uint8_t)0x00) // null terminated community name
&& (udp_buf[00] == N2N_PKT_VERSION) // correct packet version
&& ((be16toh(*(uint16_t*)&(udp_buf[02])) & N2N_FLAGS_TYPE_MASK) <= MSG_TYPE_MAX_TYPE) // message type
&& ( be16toh(*(uint16_t*)&(udp_buf[02])) < N2N_FLAGS_OPTIONS) // flags
) {
/* most probably unencrypted */
/* make sure, no downgrading happens here and no unencrypted packets can be
* injected in a community which definitely deals with encrypted headers */
HASH_FIND_COMMUNITY(sss->communities, (char *)&udp_buf[04], comm);
if(comm) {
if(comm->header_encryption == HEADER_ENCRYPTION_ENABLED) {
traceEvent(TRACE_DEBUG, "process_udp dropped a packet with unencrypted header "
"addressed to community '%s' which uses encrypted headers.",
comm->community);
return -1;
}
if(comm->header_encryption == HEADER_ENCRYPTION_UNKNOWN) {
traceEvent(TRACE_INFO, "process_udp locked community '%s' to using "
"unencrypted headers.", comm->community);
/* set 'no encryption' in case it is not set yet */
comm->header_encryption = HEADER_ENCRYPTION_NONE;
comm->header_encryption_ctx = NULL;
}
}
} else {
/* most probably encrypted */
/* cycle through the known communities (as keys) to eventually decrypt */
uint32_t ret = 0;
HASH_ITER(hh, sss->communities, comm, tmp) {
/* skip the definitely unencrypted communities */
if(comm->header_encryption == HEADER_ENCRYPTION_NONE) {
continue;
}
if((ret = packet_header_decrypt(udp_buf, udp_size,
comm->community,
comm->header_encryption_ctx, comm->header_iv_ctx,
&stamp))) {
// time stamp verification follows in the packet specific section as it requires to determine the
// sender from the hash list by its MAC, this all depends on packet type and packet structure
// (MAC is not always in the same place)
if(comm->header_encryption == HEADER_ENCRYPTION_UNKNOWN) {
traceEvent(TRACE_INFO, "process_udp locked community '%s' to using "
"encrypted headers.", comm->community);
/* set 'encrypted' in case it is not set yet */
comm->header_encryption = HEADER_ENCRYPTION_ENABLED;
}
// count the number of encrypted packets for sorting the communities from time to time
// for the HASH_ITER a few lines above gets faster for the more busy communities
(comm->number_enc_packets)++;
// no need to test further communities
break;
}
}
if(!ret) {
// no matching key/community
traceEvent(TRACE_DEBUG, "process_udp dropped a packet with seemingly encrypted header "
"for which no matching community which uses encrypted headers was found.");
return -1;
}
}
/* Use decode_common() to determine the kind of packet then process it:
*
* REGISTER_SUPER adds an edge and generate a return REGISTER_SUPER_ACK
*
* REGISTER, REGISTER_ACK and PACKET messages are forwarded to their
* destination edge. If the destination is not known then PACKETs are
* broadcast.
*/
rem = udp_size; /* Counts down bytes of packet to protect against buffer overruns. */
idx = 0; /* marches through packet header as parts are decoded. */
if(decode_common(&cmn, udp_buf, &rem, &idx) < 0) {
traceEvent(TRACE_ERROR, "Failed to decode common section");
return -1; /* failed to decode packet */
}
msg_type = cmn.pc; /* packet code */
from_supernode = cmn.flags & N2N_FLAGS_FROM_SUPERNODE;
if(cmn.ttl < 1) {
traceEvent(TRACE_WARNING, "Expired TTL");
return 0; /* Don't process further */
}
--(cmn.ttl); /* The value copied into all forwarded packets. */
switch(msg_type) {
case MSG_TYPE_PACKET: {
/* PACKET from one edge to another edge via supernode. */
/* pkt will be modified in place and recoded to an output of potentially
* different size due to addition of the socket.*/
n2n_PACKET_t pkt;
n2n_common_t cmn2;
uint8_t encbuf[N2N_SN_PKTBUF_SIZE];
size_t encx = 0;
int unicast; /* non-zero if unicast */
uint8_t * rec_buf; /* either udp_buf or encbuf */
if(!comm) {
traceEvent(TRACE_DEBUG, "process_udp PACKET with unknown community %s", cmn.community);
return -1;
}
sss->stats.last_fwd = now;
decode_PACKET(&pkt, &cmn, udp_buf, &rem, &idx);
// already checked for valid comm
if(comm->header_encryption == HEADER_ENCRYPTION_ENABLED) {
if(!find_edge_time_stamp_and_verify(comm->edges, from_supernode, pkt.srcMac, stamp, TIME_STAMP_ALLOW_JITTER)) {
traceEvent(TRACE_DEBUG, "process_udp dropped PACKET due to time stamp error.");
return -1;
}
}
unicast = (0 == is_multi_broadcast(pkt.dstMac));
traceEvent(TRACE_DEBUG, "RX PACKET (%s) %s -> %s %s",
(unicast ? "unicast" : "multicast"),
macaddr_str(mac_buf, pkt.srcMac),
macaddr_str(mac_buf2, pkt.dstMac),
(from_supernode ? "from sn" : "local"));
if(!from_supernode) {
memcpy(&cmn2, &cmn, sizeof(n2n_common_t));
/* We are going to add socket even if it was not there before */
cmn2.flags |= N2N_FLAGS_SOCKET | N2N_FLAGS_FROM_SUPERNODE;
pkt.sock.family = AF_INET;
pkt.sock.port = ntohs(sender_sock->sin_port);
memcpy(pkt.sock.addr.v4, &(sender_sock->sin_addr.s_addr), IPV4_SIZE);
rec_buf = encbuf;
/* Re-encode the header. */
encode_PACKET(encbuf, &encx, &cmn2, &pkt);
uint16_t oldEncx = encx;
/* Copy the original payload unchanged */
encode_buf(encbuf, &encx, (udp_buf + idx), (udp_size - idx));
if(comm->header_encryption == HEADER_ENCRYPTION_ENABLED) {
packet_header_encrypt(rec_buf, oldEncx, encx,
comm->header_encryption_ctx, comm->header_iv_ctx,
time_stamp());
}
} else {
/* Already from a supernode. Nothing to modify, just pass to
* destination. */
traceEvent(TRACE_DEBUG, "Rx PACKET fwd unmodified");
rec_buf = udp_buf;
encx = udp_size;
if(comm->header_encryption == HEADER_ENCRYPTION_ENABLED) {
packet_header_encrypt(rec_buf, idx, encx,
comm->header_encryption_ctx, comm->header_iv_ctx,
time_stamp());
}
}
/* Common section to forward the final product. */
if(unicast) {
try_forward(sss, comm, &cmn, pkt.dstMac, from_supernode, rec_buf, encx);
} else {
try_broadcast(sss, comm, &cmn, pkt.srcMac, from_supernode, rec_buf, encx);
}
break;
}
case MSG_TYPE_REGISTER: {
/* Forwarding a REGISTER from one edge to the next */
n2n_REGISTER_t reg;
n2n_common_t cmn2;
uint8_t encbuf[N2N_SN_PKTBUF_SIZE];
size_t encx = 0;
int unicast; /* non-zero if unicast */
uint8_t * rec_buf; /* either udp_buf or encbuf */
if(!comm) {
traceEvent(TRACE_DEBUG, "process_udp REGISTER from unknown community %s", cmn.community);
return -1;
}
sss->stats.last_fwd = now;
decode_REGISTER(&reg, &cmn, udp_buf, &rem, &idx);
// already checked for valid comm
if(comm->header_encryption == HEADER_ENCRYPTION_ENABLED) {
if(!find_edge_time_stamp_and_verify(comm->edges, from_supernode, reg.srcMac, stamp, TIME_STAMP_NO_JITTER)) {
traceEvent(TRACE_DEBUG, "process_udp dropped REGISTER due to time stamp error.");
return -1;
}
}
unicast = (0 == is_multi_broadcast(reg.dstMac));
if(unicast) {
traceEvent(TRACE_DEBUG, "Rx REGISTER %s -> %s %s",
macaddr_str(mac_buf, reg.srcMac),
macaddr_str(mac_buf2, reg.dstMac),
((cmn.flags & N2N_FLAGS_FROM_SUPERNODE) ? "from sn" : "local"));
if(0 == (cmn.flags & N2N_FLAGS_FROM_SUPERNODE)) {
memcpy(&cmn2, &cmn, sizeof(n2n_common_t));
/* We are going to add socket even if it was not there before */
cmn2.flags |= N2N_FLAGS_SOCKET | N2N_FLAGS_FROM_SUPERNODE;
reg.sock.family = AF_INET;
reg.sock.port = ntohs(sender_sock->sin_port);
memcpy(reg.sock.addr.v4, &(sender_sock->sin_addr.s_addr), IPV4_SIZE);
/* Re-encode the header. */
encode_REGISTER(encbuf, &encx, &cmn2, &reg);
rec_buf = encbuf;
} else {
/* Already from a supernode. Nothing to modify, just pass to
* destination. */
rec_buf = udp_buf;
encx = udp_size;
}
if(comm->header_encryption == HEADER_ENCRYPTION_ENABLED) {
packet_header_encrypt(rec_buf, encx, encx,
comm->header_encryption_ctx, comm->header_iv_ctx,
time_stamp());
}
try_forward(sss, comm, &cmn, reg.dstMac, from_supernode, rec_buf, encx); /* unicast only */
} else {
traceEvent(TRACE_ERROR, "Rx REGISTER with multicast destination");
}
break;
}
case MSG_TYPE_REGISTER_ACK: {
traceEvent(TRACE_DEBUG, "Rx REGISTER_ACK (NOT IMPLEMENTED) Should not be via supernode");
break;
}
case MSG_TYPE_REGISTER_SUPER: {
n2n_REGISTER_SUPER_t reg;
n2n_REGISTER_SUPER_ACK_t ack;
n2n_REGISTER_SUPER_NAK_t nak;
n2n_common_t cmn2;
uint8_t ackbuf[N2N_SN_PKTBUF_SIZE];
uint8_t *tmp_dst;
uint8_t payload_buf[REG_SUPER_ACK_PAYLOAD_SPACE];
n2n_REGISTER_SUPER_ACK_payload_t *payload;
size_t encx = 0;
struct sn_community *fed;
struct sn_community_regular_expression *re, *tmp_re;
struct peer_info *peer, *tmp_peer, *p;
int8_t allowed_match = -1;
uint8_t match = 0;
int match_length = 0;
n2n_ip_subnet_t ipaddr;
int num = 0;
int skip_add;
int skip;
int ret_value;
memset(&ack, 0, sizeof(n2n_REGISTER_SUPER_ACK_t));
memset(&nak, 0, sizeof(n2n_REGISTER_SUPER_NAK_t));
/* Edge/supernode requesting registration with us. */
sss->stats.last_reg_super=now;
++(sss->stats.reg_super);
decode_REGISTER_SUPER(&reg, &cmn, udp_buf, &rem, &idx);
if(comm) {
if(comm->header_encryption == HEADER_ENCRYPTION_ENABLED) {
if(!find_edge_time_stamp_and_verify(comm->edges, from_supernode, reg.edgeMac, stamp, TIME_STAMP_NO_JITTER)) {
traceEvent(TRACE_DEBUG, "process_udp dropped REGISTER_SUPER due to time stamp error.");
return -1;
}
}
}
/*
Before we move any further, we need to check if the requested
community is allowed by the supernode. In case it is not we do
not report any message back to the edge to hide the supernode
existance (better from the security standpoint)
*/
if(!comm && sss->lock_communities) {
HASH_ITER(hh, sss->rules, re, tmp_re) {
allowed_match = re_matchp(re->rule, (const char *)cmn.community, &match_length);
if((allowed_match != -1)
&& (match_length == strlen((const char *)cmn.community)) // --- only full matches allowed (remove, if also partial matches wanted)
&& (allowed_match == 0)) { // --- only full matches allowed (remove, if also partial matches wanted)
match = 1;
break;
}
}
if(match != 1) {
traceEvent(TRACE_INFO, "Discarded registration: unallowed community '%s'",
(char*)cmn.community);
return -1;
}
}
if(!comm && (!sss->lock_communities || (match == 1))) {
comm = (struct sn_community*)calloc(1, sizeof(struct sn_community));
if(comm) {
comm_init(comm, (char *)cmn.community);
/* new communities introduced by REGISTERs could not have had encrypted header... */
comm->header_encryption = HEADER_ENCRYPTION_NONE;
comm->header_encryption_ctx = NULL;
/* ... and also are purgeable during periodic purge */
comm->purgeable = COMMUNITY_PURGEABLE;
comm->number_enc_packets = 0;
HASH_ADD_STR(sss->communities, community, comm);
traceEvent(TRACE_INFO, "New community: %s", comm->community);
assign_one_ip_subnet(sss, comm);
}
}
if(comm) {
cmn2.ttl = N2N_DEFAULT_TTL;
cmn2.pc = n2n_register_super_ack;
cmn2.flags = N2N_FLAGS_SOCKET | N2N_FLAGS_FROM_SUPERNODE;
memcpy(cmn2.community, cmn.community, sizeof(n2n_community_t));
memcpy(&(ack.cookie), &(reg.cookie), sizeof(n2n_cookie_t));
if(comm->is_federation == IS_FEDERATION) {
memcpy(ack.edgeMac, sss->mac_addr, sizeof(n2n_mac_t));
} else {
memcpy(ack.edgeMac, reg.edgeMac, sizeof(n2n_mac_t));
}
if((reg.dev_addr.net_addr == 0) || (reg.dev_addr.net_addr == 0xFFFFFFFF) || (reg.dev_addr.net_bitlen == 0) ||
((reg.dev_addr.net_addr & 0xFFFF0000) == 0xA9FE0000 /* 169.254.0.0 */)) {
memset(&ipaddr, 0, sizeof(n2n_ip_subnet_t));
assign_one_ip_addr(comm, reg.dev_desc, &ipaddr);
ack.dev_addr.net_addr = ipaddr.net_addr;
ack.dev_addr.net_bitlen = ipaddr.net_bitlen;
}
ack.lifetime = reg_lifetime(sss);
ack.sock.family = AF_INET;
ack.sock.port = ntohs(sender_sock->sin_port);
memcpy(ack.sock.addr.v4, &(sender_sock->sin_addr.s_addr), IPV4_SIZE);
/* Add sender's data to federation (or update it) */
if(comm->is_federation == IS_FEDERATION) {
skip_add = SN_ADD;
p = add_sn_to_list_by_mac_or_sock(&(sss->federation->edges), &(ack.sock), reg.edgeMac, &skip_add);
}
// REVISIT: consider adding last_seen
/* Skip random numbers of supernodes before payload assembling, calculating an appropriate random_number.
* That way, all supernodes have a chance to be propagated with REGISTER_SUPER_ACK. */
skip = HASH_COUNT(sss->federation->edges) - (int)(REG_SUPER_ACK_PAYLOAD_ENTRY_SIZE / REG_SUPER_ACK_PAYLOAD_ENTRY_SIZE);
skip = (skip < 0) ? 0 : n2n_rand_sqr(skip);
/* Assembling supernode list for REGISTER_SUPER_ACK payload */
payload = (n2n_REGISTER_SUPER_ACK_payload_t*)payload_buf;
HASH_ITER(hh, sss->federation->edges, peer, tmp_peer) {
if(skip) {
skip--;
continue;
}
if(memcmp(&(peer->sock), &(ack.sock), sizeof(n2n_sock_t)) == 0) continue; /* a supernode doesn't add itself to the payload */
if((now - peer->last_seen) >= (2*LAST_SEEN_SN_ACTIVE)) continue; /* skip long-time-not-seen supernodes.
* We need to allow for a little extra time because supernodes sometimes exceed
* their SN_ACTIVE time before they get re-registred to. */
if(((++num)*REG_SUPER_ACK_PAYLOAD_ENTRY_SIZE) > REG_SUPER_ACK_PAYLOAD_SPACE) break; /* no more space available in REGISTER_SUPER_ACK payload */
memcpy(&(payload->sock), &(peer->sock), sizeof(n2n_sock_t));
memcpy(payload->mac, peer->mac_addr, sizeof(n2n_mac_t));
// shift to next payload entry
payload++;
}
ack.num_sn = num;
traceEvent(TRACE_DEBUG, "Rx REGISTER_SUPER for %s [%s]",
macaddr_str(mac_buf, reg.edgeMac),
sock_to_cstr(sockbuf, &(ack.sock)));
if(!is_null_mac(reg.edgeMac)) {
if(cmn.flags & N2N_FLAGS_SOCKET) {
ret_value = update_edge(sss, &reg, comm, &(ack.sock), SN_ADD_SKIP, now);
} else {
ret_value = update_edge(sss, &reg, comm, &(ack.sock), SN_ADD, now);
}
}
if(ret_value == update_edge_auth_fail) {
cmn2.pc = n2n_register_super_nak;
memcpy(&(nak.cookie), &(reg.cookie), sizeof(n2n_cookie_t));
memcpy(nak.srcMac, reg.edgeMac, sizeof(n2n_mac_t));
encode_REGISTER_SUPER_NAK(ackbuf, &encx, &cmn2, &nak);
if(comm->header_encryption == HEADER_ENCRYPTION_ENABLED) {
packet_header_encrypt(ackbuf, encx, encx,
comm->header_encryption_ctx, comm->header_iv_ctx,
time_stamp());
}
sendto(sss->sock, ackbuf, encx, 0,
(struct sockaddr *)sender_sock, sizeof(struct sockaddr_in));
if(cmn.flags & N2N_FLAGS_SOCKET) {
sendto_sock(sss, &reg.sock, ackbuf, encx);
}
traceEvent(TRACE_DEBUG, "Tx REGISTER_SUPER_NAK for %s",
macaddr_str(mac_buf, reg.edgeMac));
} else {
if(!(cmn.flags & N2N_FLAGS_SOCKET)) {
reg.sock.family = AF_INET;
reg.sock.port = ntohs(sender_sock->sin_port);
memcpy(reg.sock.addr.v4, &(sender_sock->sin_addr.s_addr), IPV4_SIZE);
cmn2.pc = n2n_register_super;
encode_REGISTER_SUPER(ackbuf, &encx, &cmn2, &reg);
if(comm->header_encryption == HEADER_ENCRYPTION_ENABLED) {
packet_header_encrypt(ackbuf, encx, encx,
comm->header_encryption_ctx, comm->header_iv_ctx,
time_stamp());
}
try_broadcast(sss, NULL, &cmn, reg.edgeMac, from_supernode, ackbuf, encx);
encx = 0;
cmn2.pc = n2n_register_super_ack;
encode_REGISTER_SUPER_ACK(ackbuf, &encx, &cmn2, &ack, payload_buf);
if(comm->header_encryption == HEADER_ENCRYPTION_ENABLED) {
packet_header_encrypt(ackbuf, encx, encx,
comm->header_encryption_ctx, comm->header_iv_ctx,
time_stamp());
}
sendto(sss->sock, ackbuf, encx, 0,
(struct sockaddr *)sender_sock, sizeof(struct sockaddr_in));
traceEvent(TRACE_DEBUG, "Tx REGISTER_SUPER_ACK for %s [%s]",
macaddr_str(mac_buf, reg.edgeMac),
sock_to_cstr(sockbuf, &(ack.sock)));
}
}
} else {
traceEvent(TRACE_INFO, "Discarded registration: unallowed community '%s'",
(char*)cmn.community);
return -1;
}
break;
}
case MSG_TYPE_UNREGISTER_SUPER: {
n2n_UNREGISTER_SUPER_t unreg;
struct peer_info *peer;
int auth;
memset(&unreg, 0, sizeof(n2n_UNREGISTER_SUPER_t));
if(!comm) {
traceEvent(TRACE_DEBUG, "process_udp UNREGISTER_SUPER with unknown community %s", cmn.community);
return -1;
}
if((from_supernode == 0) != (comm->is_federation == IS_NO_FEDERATION)) {
traceEvent(TRACE_DEBUG, "process_udp dropped UNREGISTER_SUPER: from_supernode value doesn't correspond to the internal federation marking.");
return -1;
}
decode_UNREGISTER_SUPER(&unreg, &cmn, udp_buf, &rem, &idx);
if(comm->header_encryption == HEADER_ENCRYPTION_ENABLED) {
if(!find_edge_time_stamp_and_verify (comm->edges, from_supernode, unreg.srcMac, stamp, TIME_STAMP_NO_JITTER)) {
traceEvent(TRACE_DEBUG, "process_udp dropped UNREGISTER_SUPER due to time stamp error.");
return -1;
}
}
traceEvent(TRACE_DEBUG, "Rx UNREGISTER_SUPER from %s",
macaddr_str(mac_buf, unreg.srcMac));
HASH_FIND_PEER(comm->edges, unreg.srcMac, peer);
if(peer != NULL) {
if((auth = auth_edge(&(peer->auth), &unreg.auth)) == 0) {
HASH_DEL(comm->edges, peer);
}
}
break;
}
case MSG_TYPE_REGISTER_SUPER_ACK: {
n2n_REGISTER_SUPER_ACK_t ack;
size_t encx = 0;
struct sn_community *fed;
struct peer_info *scan, *tmp;
n2n_sock_str_t sockbuf1;
n2n_sock_str_t sockbuf2;
macstr_t mac_buf1;
n2n_sock_t sender;
n2n_sock_t *orig_sender;
n2n_sock_t *tmp_sock;
n2n_mac_t *tmp_mac;
int i;
uint8_t dec_tmpbuf[REG_SUPER_ACK_PAYLOAD_SPACE];
int skip_add;
n2n_REGISTER_SUPER_ACK_payload_t *payload;
memset(&sender, 0, sizeof(n2n_sock_t));
sender.family = AF_INET;
sender.port = ntohs(sender_sock->sin_port);
memcpy(&(sender.addr.v4), &(sender_sock->sin_addr.s_addr), IPV4_SIZE);
orig_sender = &sender;
memset(&ack, 0, sizeof(n2n_REGISTER_SUPER_ACK_t));
if(!comm) {
traceEvent(TRACE_DEBUG, "process_udp REGISTER_SUPER_ACK with unknown community %s", cmn.community);
return -1;
}
if((from_supernode == 0) != (comm->is_federation == IS_NO_FEDERATION)) {
traceEvent(TRACE_DEBUG, "process_udp dropped REGISTER_SUPER_ACK: from_supernode value doesn't correspond to the internal federation marking.");
return -1;
}
decode_REGISTER_SUPER_ACK(&ack, &cmn, udp_buf, &rem, &idx, dec_tmpbuf);
orig_sender = &(ack.sock);
if(comm) {
if(comm->header_encryption == HEADER_ENCRYPTION_ENABLED) {
if(!find_edge_time_stamp_and_verify (comm->edges, from_supernode, ack.edgeMac, stamp, TIME_STAMP_NO_JITTER)) {
traceEvent(TRACE_DEBUG, "process_udp dropped REGISTER_SUPER_ACK due to time stamp error.");
return -1;
}
}
}
traceEvent(TRACE_INFO, "Rx REGISTER_SUPER_ACK myMAC=%s [%s] (external %s)",
macaddr_str(mac_buf1, ack.edgeMac),
sock_to_cstr(sockbuf1, &sender),
sock_to_cstr(sockbuf2, orig_sender));
if(comm->is_federation == IS_FEDERATION) {
skip_add = SN_ADD_SKIP;
scan = add_sn_to_list_by_mac_or_sock(&(sss->federation->edges), &sender, ack.edgeMac, &skip_add);
if(scan != NULL) {
scan->last_seen = now;
} else {
traceEvent(TRACE_DEBUG, "process_udp dropped REGISTER_SUPER_ACK due to an unknown supernode.");
break;
}
}
payload = (n2n_REGISTER_SUPER_ACK_payload_t *)dec_tmpbuf;
for(i = 0; i < ack.num_sn; i++) {
skip_add = SN_ADD;
tmp = add_sn_to_list_by_mac_or_sock(&(sss->federation->edges), &(payload->sock), payload->mac, &skip_add);
if(skip_add == SN_ADD_ADDED) {
tmp->last_seen = now - LAST_SEEN_SN_NEW;
}
// shift to next payload entry
payload++;
}
break;
}
case MSG_TYPE_REGISTER_SUPER_NAK: {
n2n_REGISTER_SUPER_NAK_t nak;
size_t encx = 0;
struct peer_info *peer;
n2n_sock_str_t sockbuf;
macstr_t mac_buf;
n2n_sock_t sender;
memset(&sender, 0, sizeof(n2n_sock_t));
sender.family = AF_INET;
sender.port = ntohs(sender_sock->sin_port);
memcpy(&(sender.addr.v4), &(sender_sock->sin_addr.s_addr), IPV4_SIZE);
memset(&nak, 0, sizeof(n2n_REGISTER_SUPER_NAK_t));
if(!comm) {
traceEvent(TRACE_DEBUG, "process_udp REGISTER_SUPER_NAK with unknown community %s", cmn.community);
return -1;
}
decode_REGISTER_SUPER_NAK(&nak, &cmn, udp_buf, &rem, &idx);
if(comm) {
if(comm->header_encryption == HEADER_ENCRYPTION_ENABLED) {
if(!find_edge_time_stamp_and_verify (comm->edges, from_supernode, nak.srcMac, stamp, TIME_STAMP_NO_JITTER)) {
traceEvent(TRACE_DEBUG, "process_udp dropped REGISTER_SUPER_NAK due to time stamp error.");
return -1;
}
}
}
traceEvent(TRACE_INFO, "Rx REGISTER_SUPER_NAK from %s [%s]",
macaddr_str(mac_buf, nak.srcMac),
sock_to_cstr(sockbuf, &sender));
HASH_FIND_PEER(comm->edges, nak.srcMac, peer);
if(comm->is_federation == IS_NO_FEDERATION) {
if(peer != NULL) {
HASH_DEL(comm->edges, peer);
}
}
break;
}
case MSG_TYPE_QUERY_PEER: {
n2n_QUERY_PEER_t query;
uint8_t encbuf[N2N_SN_PKTBUF_SIZE];
size_t encx = 0;
n2n_common_t cmn2;
n2n_PEER_INFO_t pi;
struct sn_community_regular_expression *re, *tmp_re;
struct peer_info *peer, *tmp_peer, *p;
int8_t allowed_match = -1;
uint8_t match = 0;
int match_length = 0;
uint8_t *rec_buf; /* either udp_buf or encbuf */
if(!comm && sss->lock_communities) {
HASH_ITER(hh, sss->rules, re, tmp_re) {
allowed_match = re_matchp(re->rule, (const char *)cmn.community, &match_length);
if((allowed_match != -1)
&& (match_length == strlen((const char *)cmn.community)) // --- only full match…
&& (allowed_match == 0)) { // --- only full matches allowed (re…
match = 1;
break;
}
}
if(match != 1) {
traceEvent(TRACE_DEBUG, "process_udp QUERY_PEER from unknown community %s", cmn.community);
return -1;
}
}
if(!comm && sss->lock_communities && (match == 0)) {
traceEvent(TRACE_DEBUG, "process_udp QUERY_PEER from not allowed community %s", cmn.community);
return -1;
}
decode_QUERY_PEER( &query, &cmn, udp_buf, &rem, &idx );
// already checked for valid comm
if(comm) {
if(comm->header_encryption == HEADER_ENCRYPTION_ENABLED) {
if(!find_edge_time_stamp_and_verify (comm->edges, from_supernode, query.srcMac, stamp, TIME_STAMP_ALLOW_JITTER)) {
traceEvent(TRACE_DEBUG, "process_udp dropped QUERY_PEER due to time stamp error.");
return -1;
}
}
}
if(is_null_mac(query.targetMac)) {
traceEvent(TRACE_DEBUG, "Rx PING from %s.",
macaddr_str(mac_buf, query.srcMac));
cmn2.ttl = N2N_DEFAULT_TTL;
cmn2.pc = n2n_peer_info;
cmn2.flags = N2N_FLAGS_FROM_SUPERNODE;
memcpy(cmn2.community, cmn.community, sizeof(n2n_community_t));
pi.aflags = 0;
memcpy(pi.mac, query.targetMac, sizeof(n2n_mac_t));
memcpy(pi.srcMac, sss->mac_addr, sizeof(n2n_mac_t));
pi.sock.family = AF_INET;
pi.sock.port = ntohs(sender_sock->sin_port);
memcpy(pi.sock.addr.v4, &(sender_sock->sin_addr.s_addr), IPV4_SIZE);
pi.data = sn_selection_criterion_gather_data(sss);
encode_PEER_INFO(encbuf, &encx, &cmn2, &pi);
if(comm) {
if(comm->header_encryption == HEADER_ENCRYPTION_ENABLED) {
packet_header_encrypt(encbuf, encx, encx, comm->header_encryption_ctx,
comm->header_iv_ctx,
time_stamp());
}
}
sendto(sss->sock, encbuf, encx, 0,
(struct sockaddr *)sender_sock, sizeof(struct sockaddr_in));
traceEvent(TRACE_DEBUG, "Tx PONG to %s",
macaddr_str(mac_buf, query.srcMac));
} else {
traceEvent(TRACE_DEBUG, "Rx QUERY_PEER from %s for %s",
macaddr_str(mac_buf, query.srcMac),
macaddr_str(mac_buf2, query.targetMac));
struct peer_info *scan;
HASH_FIND_PEER(comm->edges, query.targetMac, scan);
if(scan) {
cmn2.ttl = N2N_DEFAULT_TTL;
cmn2.pc = n2n_peer_info;
cmn2.flags = N2N_FLAGS_FROM_SUPERNODE;
memcpy(cmn2.community, cmn.community, sizeof(n2n_community_t));
pi.aflags = 0;
memcpy(pi.mac, query.targetMac, sizeof(n2n_mac_t));
pi.sock = scan->sock;
encode_PEER_INFO(encbuf, &encx, &cmn2, &pi);
if(comm->header_encryption == HEADER_ENCRYPTION_ENABLED) {
packet_header_encrypt(encbuf, encx, encx, comm->header_encryption_ctx,
comm->header_iv_ctx,
time_stamp());
}
if(cmn.flags & N2N_FLAGS_SOCKET) {
sendto_sock(sss, &query.sock, encbuf, encx);
} else {
sendto(sss->sock, encbuf, encx, 0,
(struct sockaddr *)sender_sock, sizeof(struct sockaddr_in));
}
traceEvent(TRACE_DEBUG, "Tx PEER_INFO to %s",
macaddr_str(mac_buf, query.srcMac));
} else {
if(from_supernode) {
traceEvent(TRACE_DEBUG, "QUERY_PEER on unknown edge from supernode %s. Dropping the packet.",
macaddr_str(mac_buf, query.srcMac));
} else {
traceEvent(TRACE_DEBUG, "QUERY_PEER from unknown edge %s. Forwarding to all other supernodes.",
macaddr_str(mac_buf, query.srcMac));
memcpy(&cmn2, &cmn, sizeof(n2n_common_t));
/* We are going to add socket even if it was not there before */
cmn2.flags |= N2N_FLAGS_SOCKET | N2N_FLAGS_FROM_SUPERNODE;
query.sock.family = AF_INET;
query.sock.port = ntohs(sender_sock->sin_port);
memcpy(query.sock.addr.v4, &(sender_sock->sin_addr.s_addr), IPV4_SIZE);
encode_QUERY_PEER(encbuf, &encx, &cmn2, &query);
if(comm->header_encryption == HEADER_ENCRYPTION_ENABLED) {
packet_header_encrypt(encbuf, encx, encx, comm->header_encryption_ctx,
comm->header_iv_ctx,
time_stamp());
}
try_broadcast(sss, NULL, &cmn, query.srcMac, from_supernode, encbuf, encx);
}
}
}
break;
}
default:
/* Not a known message type */
traceEvent(TRACE_WARNING, "Unable to handle packet type %d: ignored", (signed int)msg_type);
} /* switch(msg_type) */
return 0;
}
/** Long lived processing entry point. Split out from main to simply
* daemonisation on some platforms. */
int run_sn_loop (n2n_sn_t *sss, int *keep_running) {
uint8_t pktbuf[N2N_SN_PKTBUF_SIZE];
time_t last_purge_edges = 0;
time_t last_sort_communities = 0;
time_t last_re_reg_and_purge = 0;
sss->start_time = time(NULL);
while(*keep_running) {
int rc;
ssize_t bread;
int max_sock;
fd_set socket_mask;
struct timeval wait_time;
time_t now = 0;
FD_ZERO(&socket_mask);
max_sock = MAX(sss->sock, sss->mgmt_sock);
FD_SET(sss->sock, &socket_mask);
FD_SET(sss->mgmt_sock, &socket_mask);
wait_time.tv_sec = 10;
wait_time.tv_usec = 0;
rc = select(max_sock + 1, &socket_mask, NULL, NULL, &wait_time);
now = time(NULL);
if(rc > 0) {
if(FD_ISSET(sss->sock, &socket_mask)) {
struct sockaddr_in sender_sock;
socklen_t i;
i = sizeof(sender_sock);
bread = recvfrom(sss->sock, pktbuf, N2N_SN_PKTBUF_SIZE, 0 /*flags*/,
(struct sockaddr *)&sender_sock, (socklen_t *)&i);
if((bread < 0)
#ifdef WIN32
&& (WSAGetLastError() != WSAECONNRESET)
#endif
) {
/* For UDP bread of zero just means no data (unlike TCP). */
/* The fd is no good now. Maybe we lost our interface. */
traceEvent(TRACE_ERROR, "recvfrom() failed %d errno %d (%s)", bread, errno, strerror(errno));
#ifdef WIN32
traceEvent(TRACE_ERROR, "WSAGetLastError(): %u", WSAGetLastError());
#endif
*keep_running = 0;
break;
}
/* We have a datagram to process */
if(bread > 0) {
/* And the datagram has data (not just a header) */
process_udp(sss, &sender_sock, pktbuf, bread, now);
}
}
if(FD_ISSET(sss->mgmt_sock, &socket_mask)) {
struct sockaddr_in sender_sock;
size_t i;
i = sizeof(sender_sock);
bread = recvfrom(sss->mgmt_sock, pktbuf, N2N_SN_PKTBUF_SIZE, 0 /*flags*/,
(struct sockaddr *)&sender_sock, (socklen_t *)&i);
if(bread <= 0) {
traceEvent(TRACE_ERROR, "recvfrom() failed %d errno %d (%s)", bread, errno, strerror(errno));
*keep_running = 0;
break;
}
/* We have a datagram to process */
process_mgmt(sss, &sender_sock, pktbuf, bread, now);
}
} else {
traceEvent(TRACE_DEBUG, "timeout");
}
re_register_and_purge_supernodes(sss, sss->federation, &last_re_reg_and_purge, now);
purge_expired_communities(sss, &last_purge_edges, now);
sort_communities(sss, &last_sort_communities, now);
} /* while */
sn_term(sss);
return 0;
}