|
|
|
/**
|
|
|
|
* (C) 2007-18 - ntop.org and contributors
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not see see <http://www.gnu.org/licenses/>
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "n2n.h"
|
|
|
|
#include "n2n_transforms.h"
|
|
|
|
|
|
|
|
#ifdef N2N_HAVE_AES
|
|
|
|
|
|
|
|
#include <openssl/aes.h>
|
|
|
|
#include <openssl/sha.h>
|
|
|
|
|
|
|
|
#define N2N_AES_TRANSFORM_VERSION 1 /* version of the transform encoding */
|
|
|
|
#define N2N_AES_IVEC_SIZE (AES_BLOCK_SIZE)
|
|
|
|
|
|
|
|
#define AES256_KEY_BYTES (256/8)
|
|
|
|
#define AES192_KEY_BYTES (192/8)
|
|
|
|
#define AES128_KEY_BYTES (128/8)
|
|
|
|
|
|
|
|
/* AES plaintext preamble */
|
|
|
|
#define TRANSOP_AES_VER_SIZE 1 /* Support minor variants in encoding in one module. */
|
|
|
|
#define TRANSOP_AES_IV_SEED_SIZE 8 /* size of transmitted random part of IV in bytes; leave it set to 8 for now */
|
|
|
|
#define TRANSOP_AES_IV_PADDING_SIZE (N2N_AES_IVEC_SIZE - TRANSOP_AES_IV_SEED_SIZE)
|
|
|
|
#define TRANSOP_AES_IV_KEY_BYTES (AES128_KEY_BYTES) /* use AES128 for IV encryption */
|
|
|
|
#define TRANSOP_AES_PREAMBLE_SIZE (TRANSOP_AES_VER_SIZE + TRANSOP_AES_IV_SEED_SIZE)
|
|
|
|
|
|
|
|
typedef unsigned char n2n_aes_ivec_t[N2N_AES_IVEC_SIZE];
|
|
|
|
|
|
|
|
typedef struct transop_aes {
|
|
|
|
AES_KEY enc_key; /* tx key */
|
|
|
|
AES_KEY dec_key; /* tx key */
|
|
|
|
AES_KEY iv_enc_key; /* key used to encrypt the IV */
|
|
|
|
uint8_t iv_pad_val[TRANSOP_AES_IV_PADDING_SIZE]; /* key used to pad the random IV seed to full block size */
|
|
|
|
} transop_aes_t;
|
|
|
|
|
|
|
|
static int transop_deinit_aes(n2n_trans_op_t *arg) {
|
|
|
|
transop_aes_t *priv = (transop_aes_t *)arg->priv;
|
|
|
|
|
|
|
|
if(priv)
|
|
|
|
free(priv);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void set_aes_cbc_iv(transop_aes_t *priv, n2n_aes_ivec_t ivec, uint64_t iv_seed) {
|
|
|
|
uint8_t iv_full[N2N_AES_IVEC_SIZE];
|
|
|
|
|
|
|
|
/* Extend the seed to full block size with padding value */
|
|
|
|
memcpy(iv_full, priv->iv_pad_val, TRANSOP_AES_IV_PADDING_SIZE);
|
|
|
|
memcpy(iv_full + TRANSOP_AES_IV_PADDING_SIZE, &iv_seed, TRANSOP_AES_IV_SEED_SIZE);
|
|
|
|
|
|
|
|
/* Encrypt the IV with secret key to make it unpredictable.
|
|
|
|
* As discussed in https://github.com/ntop/n2n/issues/72, it's important to
|
|
|
|
* have an unpredictable IV since the initial part of the packet plaintext
|
|
|
|
* can be easily reconstructed from plaintext headers and used by an attacker
|
|
|
|
* to perform differential analysis.
|
|
|
|
*/
|
|
|
|
AES_ecb_encrypt(iv_full, ivec, &priv->iv_enc_key, AES_ENCRYPT);
|
|
|
|
}
|
|
|
|
|
|
|
|
/** The aes packet format consists of:
|
|
|
|
*
|
|
|
|
* - a 8-bit aes encoding version in clear text
|
|
|
|
* - a 64-bit random IV seed
|
|
|
|
* - encrypted payload.
|
|
|
|
*
|
|
|
|
* [V|II|DDDDDDDDDDDDDDDDDDDDD]
|
|
|
|
* |<---- encrypted ---->|
|
|
|
|
*/
|
|
|
|
static int transop_encode_aes( n2n_trans_op_t * arg,
|
|
|
|
uint8_t * outbuf,
|
|
|
|
size_t out_len,
|
|
|
|
const uint8_t * inbuf,
|
|
|
|
size_t in_len,
|
|
|
|
const uint8_t * peer_mac)
|
|
|
|
{
|
|
|
|
int len2=-1;
|
|
|
|
transop_aes_t * priv = (transop_aes_t *)arg->priv;
|
|
|
|
uint8_t assembly[N2N_PKT_BUF_SIZE] = {0};
|
|
|
|
|
|
|
|
if ( in_len <= N2N_PKT_BUF_SIZE) {
|
|
|
|
if ( (in_len + TRANSOP_AES_PREAMBLE_SIZE) <= out_len) {
|
|
|
|
int len=-1;
|
|
|
|
size_t idx=0;
|
|
|
|
uint64_t iv_seed = 0;
|
|
|
|
uint8_t padding = 0;
|
|
|
|
n2n_aes_ivec_t enc_ivec = {0};
|
|
|
|
|
|
|
|
traceEvent(TRACE_DEBUG, "encode_aes %lu", in_len);
|
|
|
|
|
|
|
|
/* Encode the aes format version. */
|
|
|
|
encode_uint8( outbuf, &idx, N2N_AES_TRANSFORM_VERSION);
|
|
|
|
|
|
|
|
/* Generate and encode the IV seed.
|
|
|
|
* Using two calls to rand() because RAND_MAX is usually < 64bit
|
|
|
|
* (e.g. linux) and sometimes < 32bit (e.g. Windows).
|
|
|
|
*/
|
|
|
|
iv_seed = ((((uint64_t)rand() & 0xFFFFFFFF)) << 32) | rand();
|
|
|
|
encode_buf(outbuf, &idx, &iv_seed, TRANSOP_AES_IV_SEED_SIZE);
|
|
|
|
|
|
|
|
/* Encrypt the assembly contents and write the ciphertext after the iv seed. */
|
|
|
|
/* len is set to the length of the cipher plain text to be encrpyted
|
|
|
|
which is (in this case) identical to original packet lentgh */
|
|
|
|
len = in_len;
|
|
|
|
|
|
|
|
/* The assembly buffer is a source for encrypting data.
|
|
|
|
* The whole contents of assembly are encrypted. */
|
|
|
|
memcpy( assembly, inbuf, in_len);
|
|
|
|
|
|
|
|
/* Need at least one encrypted byte at the end for the padding. */
|
|
|
|
len2 = ( (len / AES_BLOCK_SIZE) + 1) * AES_BLOCK_SIZE; /* Round up to next whole AES adding at least one byte. */
|
|
|
|
padding = (len2-len);
|
|
|
|
assembly[len2 - 1] = padding;
|
|
|
|
traceEvent(TRACE_DEBUG, "padding = %u, seed = %016llx", padding, iv_seed);
|
|
|
|
|
|
|
|
set_aes_cbc_iv(priv, enc_ivec, iv_seed);
|
|
|
|
|
|
|
|
AES_cbc_encrypt( assembly, /* source */
|
|
|
|
outbuf + TRANSOP_AES_PREAMBLE_SIZE, /* dest */
|
|
|
|
len2, /* enc size */
|
|
|
|
&(priv->enc_key), enc_ivec, AES_ENCRYPT);
|
|
|
|
|
|
|
|
len2 += TRANSOP_AES_PREAMBLE_SIZE; /* size of data carried in UDP. */
|
|
|
|
} else
|
|
|
|
traceEvent(TRACE_ERROR, "encode_aes outbuf too small.");
|
|
|
|
} else
|
|
|
|
traceEvent(TRACE_ERROR, "encode_aes inbuf too big to encrypt.");
|
|
|
|
|
|
|
|
return len2;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* See transop_encode_aes for packet format */
|
|
|
|
static int transop_decode_aes( n2n_trans_op_t * arg,
|
|
|
|
uint8_t * outbuf,
|
|
|
|
size_t out_len,
|
|
|
|
const uint8_t * inbuf,
|
|
|
|
size_t in_len,
|
|
|
|
const uint8_t * peer_mac) {
|
|
|
|
int len=0;
|
|
|
|
transop_aes_t * priv = (transop_aes_t *)arg->priv;
|
|
|
|
uint8_t assembly[N2N_PKT_BUF_SIZE];
|
|
|
|
|
|
|
|
if ( ( (in_len - TRANSOP_AES_PREAMBLE_SIZE) <= N2N_PKT_BUF_SIZE) /* Cipher text fits in assembly */
|
|
|
|
&& (in_len >= TRANSOP_AES_PREAMBLE_SIZE) /* Has at least version, iv seed */
|
|
|
|
)
|
|
|
|
{
|
|
|
|
size_t rem=in_len;
|
|
|
|
size_t idx=0;
|
|
|
|
uint8_t aes_enc_ver=0;
|
|
|
|
uint64_t iv_seed=0;
|
|
|
|
|
|
|
|
/* Get the encoding version to make sure it is supported */
|
|
|
|
decode_uint8( &aes_enc_ver, inbuf, &rem, &idx );
|
|
|
|
|
|
|
|
if ( N2N_AES_TRANSFORM_VERSION == aes_enc_ver) {
|
|
|
|
/* Get the IV seed */
|
|
|
|
decode_buf((uint8_t *)&iv_seed, TRANSOP_AES_IV_SEED_SIZE, inbuf, &rem, &idx);
|
|
|
|
|
|
|
|
traceEvent(TRACE_DEBUG, "decode_aes %lu with seed %016llx", in_len, iv_seed);
|
|
|
|
|
|
|
|
len = (in_len - TRANSOP_AES_PREAMBLE_SIZE);
|
|
|
|
|
|
|
|
if ( 0 == (len % AES_BLOCK_SIZE)) {
|
|
|
|
uint8_t padding;
|
|
|
|
n2n_aes_ivec_t dec_ivec = {0};
|
|
|
|
|
|
|
|
set_aes_cbc_iv(priv, dec_ivec, iv_seed);
|
|
|
|
|
|
|
|
AES_cbc_encrypt( (inbuf + TRANSOP_AES_PREAMBLE_SIZE),
|
|
|
|
assembly, /* destination */
|
|
|
|
len,
|
|
|
|
&(priv->dec_key),
|
|
|
|
dec_ivec, AES_DECRYPT);
|
|
|
|
|
|
|
|
/* last byte is how much was padding: max value should be
|
|
|
|
* AES_BLOCKSIZE-1 */
|
|
|
|
padding = assembly[ len-1 ] & 0xff;
|
|
|
|
|
|
|
|
if ( len >= padding)
|
|
|
|
{
|
|
|
|
/* strictly speaking for this to be an ethernet packet
|
|
|
|
* it is going to need to be even bigger; but this is
|
|
|
|
* enough to prevent segfaults. */
|
|
|
|
traceEvent(TRACE_DEBUG, "padding = %u", padding);
|
|
|
|
len -= padding;
|
|
|
|
|
|
|
|
memcpy( outbuf,
|
|
|
|
assembly,
|
|
|
|
len);
|
|
|
|
} else
|
|
|
|
traceEvent(TRACE_WARNING, "UDP payload decryption failed.");
|
|
|
|
} else {
|
|
|
|
traceEvent(TRACE_WARNING, "Encrypted length %d is not a multiple of AES_BLOCK_SIZE (%d)", len, AES_BLOCK_SIZE);
|
|
|
|
len = 0;
|
|
|
|
}
|
|
|
|
} else
|
|
|
|
traceEvent(TRACE_ERROR, "decode_aes unsupported aes version %u.", aes_enc_ver);
|
|
|
|
} else
|
|
|
|
traceEvent(TRACE_ERROR, "decode_aes inbuf wrong size (%ul) to decrypt.", in_len);
|
|
|
|
|
|
|
|
return len;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int setup_aes_key(transop_aes_t *priv, const uint8_t *key, ssize_t key_size) {
|
|
|
|
size_t aes_key_size_bytes;
|
|
|
|
size_t aes_key_size_bits;
|
|
|
|
|
|
|
|
uint8_t key_mat_buf[SHA512_DIGEST_LENGTH + SHA256_DIGEST_LENGTH];
|
|
|
|
size_t key_mat_buf_length;
|
|
|
|
|
|
|
|
/* Clear out any old possibly longer key matter. */
|
|
|
|
memset( &(priv->enc_key), 0, sizeof(priv->enc_key) );
|
|
|
|
memset( &(priv->dec_key), 0, sizeof(priv->dec_key) );
|
|
|
|
memset( &(priv->iv_enc_key), 0, sizeof(priv->iv_enc_key) );
|
|
|
|
memset( &(priv->iv_pad_val), 0, sizeof(priv->iv_pad_val) );
|
|
|
|
|
|
|
|
/* Let the user choose the degree of encryption:
|
|
|
|
* Long input keys will pick AES192 or AES256 with more robust but expensive encryption.
|
|
|
|
*
|
|
|
|
* The input key always gets hashed to make a more unpredictable use of the key space and
|
|
|
|
* also to derive some additional material (key for IV encrpytion, IV padding).
|
|
|
|
*
|
|
|
|
* The following scheme for key setup was discussed on github:
|
|
|
|
* https://github.com/ntop/n2n/issues/101
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* create a working buffer of maximal occuring hashes size and generate
|
|
|
|
* the hashes for the aes key material, key_mat_buf_lengh indicates the
|
|
|
|
* actual "filling level" of the buffer
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (key_size >= 65)
|
|
|
|
{
|
|
|
|
aes_key_size_bytes = AES256_KEY_BYTES;
|
|
|
|
SHA512(key, key_size, key_mat_buf);
|
|
|
|
key_mat_buf_length = SHA512_DIGEST_LENGTH;
|
|
|
|
}
|
|
|
|
else if (key_size >= 44)
|
|
|
|
{
|
|
|
|
aes_key_size_bytes = AES192_KEY_BYTES;
|
|
|
|
SHA384(key, key_size, key_mat_buf);
|
|
|
|
/* append a hash of the first hash to create enough material for IV padding */
|
|
|
|
SHA256(key_mat_buf, SHA384_DIGEST_LENGTH, key_mat_buf + SHA384_DIGEST_LENGTH);
|
|
|
|
key_mat_buf_length = SHA384_DIGEST_LENGTH + SHA256_DIGEST_LENGTH;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
aes_key_size_bytes = AES128_KEY_BYTES;
|
|
|
|
SHA256(key, key_size, key_mat_buf);
|
|
|
|
/* append a hash of the first hash to create enough material for IV padding */
|
|
|
|
SHA256(key_mat_buf, SHA256_DIGEST_LENGTH, key_mat_buf + SHA256_DIGEST_LENGTH);
|
|
|
|
key_mat_buf_length = 2 * SHA256_DIGEST_LENGTH;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* is there enough material available? */
|
|
|
|
if (key_mat_buf_length < (aes_key_size_bytes + TRANSOP_AES_IV_KEY_BYTES + TRANSOP_AES_IV_PADDING_SIZE))
|
|
|
|
{
|
|
|
|
/* this should never happen */
|
|
|
|
traceEvent( TRACE_ERROR, "AES missing %u bits hashed key material\n",
|
|
|
|
(aes_key_size_bytes + TRANSOP_AES_IV_KEY_BYTES + TRANSOP_AES_IV_PADDING_SIZE - key_mat_buf_length) * 8);
|
|
|
|
return(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* setup of enc_key/dec_key, used for the CBC encryption */
|
|
|
|
aes_key_size_bits = 8 * aes_key_size_bytes;
|
|
|
|
AES_set_encrypt_key(key_mat_buf, aes_key_size_bits, &(priv->enc_key));
|
|
|
|
AES_set_decrypt_key(key_mat_buf, aes_key_size_bits, &(priv->dec_key));
|
|
|
|
|
|
|
|
/* setup of iv_enc_key (AES128 key) and iv_pad_val, used for generating the CBC IV */
|
|
|
|
AES_set_encrypt_key(key_mat_buf + aes_key_size_bytes, TRANSOP_AES_IV_KEY_BYTES * 8, &(priv->iv_enc_key));
|
|
|
|
memcpy(priv->iv_pad_val, key_mat_buf + aes_key_size_bytes + TRANSOP_AES_IV_KEY_BYTES, TRANSOP_AES_IV_PADDING_SIZE);
|
|
|
|
|
|
|
|
traceEvent(TRACE_DEBUG, "AES %u bits setup completed\n",
|
|
|
|
aes_key_size_bits);
|
|
|
|
|
|
|
|
return(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void transop_tick_aes(n2n_trans_op_t * arg, time_t now) {}
|
|
|
|
|
|
|
|
/* AES initialization function */
|
|
|
|
int n2n_transop_aes_cbc_init(const n2n_edge_conf_t *conf, n2n_trans_op_t *ttt) {
|
|
|
|
transop_aes_t *priv;
|
|
|
|
const u_char *encrypt_key = (const u_char *)conf->encrypt_key;
|
|
|
|
size_t encrypt_key_len = strlen(conf->encrypt_key);
|
|
|
|
|
|
|
|
memset(ttt, 0, sizeof(*ttt));
|
|
|
|
ttt->transform_id = N2N_TRANSFORM_ID_AESCBC;
|
|
|
|
|
|
|
|
ttt->tick = transop_tick_aes;
|
|
|
|
ttt->deinit = transop_deinit_aes;
|
|
|
|
ttt->fwd = transop_encode_aes;
|
|
|
|
ttt->rev = transop_decode_aes;
|
|
|
|
|
|
|
|
priv = (transop_aes_t*) calloc(1, sizeof(transop_aes_t));
|
|
|
|
if(!priv) {
|
|
|
|
traceEvent(TRACE_ERROR, "cannot allocate transop_aes_t memory");
|
|
|
|
return(-1);
|
|
|
|
}
|
|
|
|
ttt->priv = priv;
|
|
|
|
|
|
|
|
/* Setup the key */
|
|
|
|
return(setup_aes_key(priv, encrypt_key, encrypt_key_len));
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* N2N_HAVE_AES */
|