A virtual network shared between multiple edge nodes in n2n is called a _community_. A single supernode can relay multiple communities and a single computer can be part of multiple communities at the same time. An encryption key can be used by the edge nodes to encrypt the packets within their community.
n2n tries to establish a direct peer-to-peer connection via udp between the edge nodes when possible. When this is not possible (usually due to special NAT devices), the supernode is also used to relay the packets.
Some Linux distributions already provide n2n as a package so a simple `sudo apt install n2n` will do the work. Alternatively, up-to-date packages for most distributions are available on [ntop repositories](http://packages.ntop.org/).
**IMPORTANT** It is strongly advised to choose a custom community name (`-c`) and a secret encryption key (`-k`) in order to prevent other users from connecting to your computer. For the privacy of your data sent and to reduce the server load of `supernode.ntop.org`, it is also suggested to set up a custom supernode as explained below.
You can create your own infrastructure by setting up a supernode on a public server (e.g. a VPS). You just need to open a single port (1234 in the example below) on your firewall (usually `iptables`).
Now the supernode service should be up and running on port 1234. On your edge nodes you can now specify `-l your_supernode_ip:1234` to use it. All the edge nodes must use the same supernode.
Some parts of the code significantly benefit from compiler optimizations and platform features such as NEON, SSE and AVX. To enable, use `./configure CFLAGS="-O3 -march=native"` for configuration instead of `./configure`.
**IMPORTANT** It is generally recommended to use the [latest stable release](https://github.com/ntop/n2n/releases). Please note that the current _dev_ branch usually is not guaranteed to be backward compatible neither with the latest stable release nor with previous _dev_ states. On the other hand, if you dare to try the bleeding edge features, you are encouraged to compile from _dev_ – just keep track of sometimes rapidly occuring changes. Feedback in the _Issues_ section is appreciated.
Reaching a remote network or tunneling all the internet traffic via n2n are two common tasks which require a proper routing setup. n2n supports routing needs providing options for packet forwarding (`-r`) including broadcasts (`-E`) as well as temporarily modifying the routing table (`-n`). Details can be found in the [Routing.md](doc/Routing.md) document.
- Go bindings, management daemons and CLIs for n2n edges and supernodes, Docker, Kubernetes & Helm Charts: [pojntfx/gon2n](https://pojntfx.github.io/gon2n/)